



199ac Chen

TRF originator: Intertek Shanghai

#### **TEST REPORT**

# Engineering Recommendation EN 50549-1:2019 Requirements for the connection of generation equipment in parallel with public distribution networks

**Report Reference No.** ...... 2308A0285SHA-001

Tested by (name + signature) ......: Issac Chen

Approved by (name + signature) .....: Sleif Sui

Testing Laboratory ...... Intertek Testing Services Shanghai.

China.

Testing location / address...... Same as above

Applicant's name ...... Elmark Industries SC

Test specification:

equipment in parallel with public distribution networks.

Test procedure.....: testing
Non-standard test method.....: N/A

Test Report Form/blank test report

Master TRF...... 2019-11

This publication may be reproduced in whole or in part for non-commercial purpose as long as Intertek is acknowledged as copyright owner and source of the material. Intertek takes no responsibility and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.



Page 2 of 87

Report No. 2308A0285SHA-001

TRF originator: Intertek Shanghai

Test item description .....: PV Grid interactive inverter

Trade Mark .....: **EL**MARK

Manufacturer .....: Same as applicant

Model/Type reference....: ELM3PON030K, ELM3PON036K, ELM3PON040K, ELM3PON050K,

ELM3PON060K

Rating..... See below Specifications table

|                                      | Specifications table           |          |             |          |           |  |
|--------------------------------------|--------------------------------|----------|-------------|----------|-----------|--|
| Model                                | ELM3PON0                       | ELM3PON0 | ELM3PON0    | ELM3PON0 | ELM3PON06 |  |
|                                      | 30K                            | 36K      | 40K         | 50K      | 0K        |  |
| PV input                             |                                | T        | T           | T        |           |  |
| P pv Max(W)                          | 45000                          | 54000    | 60000       | 75000    | 90000     |  |
| Vmax PV (Vdc) (absolute Max.)        | 1100                           | 1100     | 1100        | 1100     | 1100      |  |
| Isc PV (absolute Max.) (A)           | 48 x 2                         | 48 x 3   | 48 x 3      | 48 x 3   | 48 x 4    |  |
| Number MPP trackers                  | 2                              | 3        | 3           | 3        | 4         |  |
| Number input strings                 | 2/3                            | 2/2/2    | 2/2/2       | 2/2/3    | 2/2/2/2   |  |
| Max. PV input current / strings (A)  | 38 x 2                         | 38 x 3   | 38 x 3      | 40 x 3   | 38 x 4    |  |
| MPPT voltage range (Vdc)             | 200-1000                       | 200-1000 | 200-1000    | 200-1000 | 200-1000  |  |
| Vdc range @ full power (Vdc)         | 500-850                        | 500-850  | 500-850     | 500-850  | 500-850   |  |
| AC Grid (output)                     |                                |          |             |          |           |  |
| Normal AC Voltage (V <sub>AC</sub> ) |                                | 3P+N     | +PE/3P+PE 2 | 30/400   |           |  |
| Frequency (Hz)                       |                                |          | 50          |          |           |  |
| Normal AC Current (A)                | 43.5                           | 52.2     | 58          | 72.5     | 87        |  |
| Max. cont. output current (A)        | 48                             | 60       | 65          | 80       | 96        |  |
| Normal Power (W)                     | 30000                          | 36000    | 40000       | 50000    | 60000     |  |
| Rated Apparent Power (VA)            | 30000                          | 36000    | 40000       | 50000    | 60000     |  |
| Max. cont. Power (W)                 | 30000                          | 36000    | 40000       | 50000    | 60000     |  |
| Max. cont. Apparent Power (VA)       | 30000                          | 36000    | 40000       | 50000    | 60000     |  |
| Power factor(adjustable)             | 1.0( -0.8~ +0.8)               |          |             |          |           |  |
| Others                               |                                |          |             |          |           |  |
| Protective class                     | Class I                        |          |             |          |           |  |
| Ingress protection (IP)              | IP65                           |          |             |          |           |  |
| Temperature (°C)                     | -25°C to +60°C (Derating 45°C) |          |             |          |           |  |
| Inverter Isolation                   | Non-isolated                   |          |             |          |           |  |
| Overvoltage category                 | OVC III (AC Main), OVC II (PV) |          |             |          |           |  |
| Software version                     |                                | DSP:V06  | CPLD:V06    | HMI:V06  |           |  |



#### Summary of testing:

| Tests perforn | ned (name of test and test clause):                                           | Testing location:            |
|---------------|-------------------------------------------------------------------------------|------------------------------|
| EN 50549-1    | Test Description                                                              | Building No.86, 1198 Qinzhou |
| 4.4.2         | Operating frequency range                                                     | Road (North), Shanghai       |
| 4.4.3         | Minimal requirements for active power delivery at underfrequency              | 200233, China                |
| 4.4.4         | Continuous voltage operation range                                            |                              |
| 4.5.2         | Rate of change of frequency (ROCOF)                                           |                              |
| 4.5.3         | UVRT                                                                          |                              |
| 4.5.4         | OVRT                                                                          |                              |
| 4.6.1         | Power response to over frequency                                              |                              |
| 4.7.2.2       | Q Capabilites (Power Factor) & Q(U) Capabilities                              |                              |
| 4.7.2.3.3     | Q Control. Voltage related control mode                                       |                              |
| 4.7.2.3.4     | Q Control Power related control modes                                         |                              |
| 4.7.3         | Voltage control by active power                                               |                              |
| 4.7.4         | Zero current mode                                                             |                              |
| 4.9.3         | Interface protection                                                          |                              |
| 4.9.4         | Islanding                                                                     |                              |
| 4.10.2        | Reconnection after tripping                                                   |                              |
| 4.10.3        | Starting to generate electrical power                                         |                              |
| 4.11          | Active power reduction by setpoint and ceasing active power (Logic interface) |                              |
| 4.13          | Single fault tolerance of interface protection and interface switch           |                              |
| Remark:       |                                                                               |                              |
|               | ecial notice, the model ELM3PON060K is type tested and models.                |                              |
|               |                                                                               |                              |

Page 4 of 87

Test item particulars....: Temperature range ...... -25°C ~60°C (Derating 45 °C) IP protection class ..... IP 65 Possible test case verdicts: - test case does not apply to the test object.....: N/A - test object does meet the requirement ...... P(Pass) - test object does not meet the requirement ...... F(Fail) Testing....: Date of receipt of test item...... 2023-08-05

#### **General remarks:**

The test results presented in this report are only to the object (single power inverter unit) tested and base on Low Voltage connected on small power station.

Installer and relevant persons shall comply with EN 50549-1:2019, Local code and Grid Code in EN 50549-1:2019.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

"(see Enclosure #)" refers to additional information appended to the report.

Date (s) of performance of tests...... 2023-08-05 to 2023-09-25

"(see appended table)" refers to a table appended to the report.

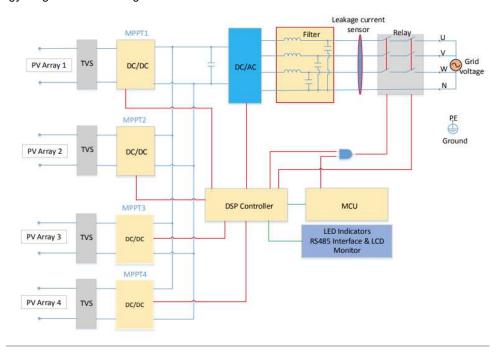
Throughout this report a point is used as the decimal separator.

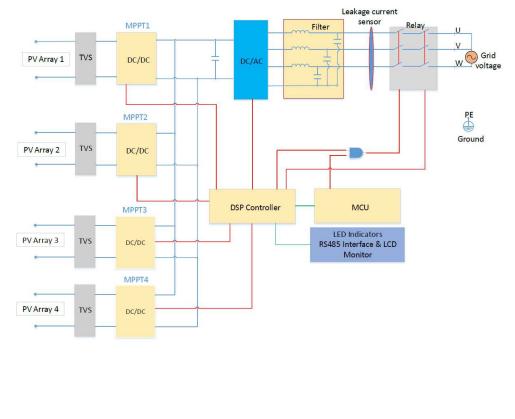
Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.

Determination of the test result includes consideration of measurement uncertainty from the test equipment and methods.

The test results presented in this report relate only to the item tested. The results indicate that the specimen partially complies with standard" EN 50549-1:2019". See general product information next for details information.




#### General product information:


The testing item is a grid-interactive PV inverter for indoor or outdoor installation.

The relays are designed to redundant structure that controlled separately.

The master controller and slave controller are used together to control relay open or close, if the single fault on one controller, the other controller can be capable to open the relay, so that still providing safety means.

The topology diagram as following:







#### Model differences:

All models are identical with hardware version and software version, the output power is derating by software.

Model ELM3PON030K has 2 MPPT trackers with 5 input strings,

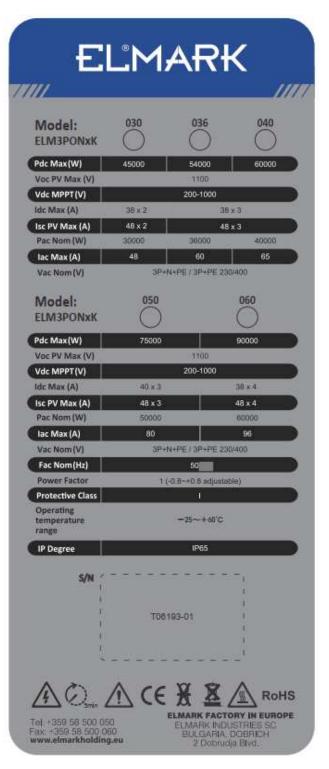
Model ELM3PON036K and ELM3PON040K has 3 MPPT trackers with 6 input strings,

Model ELM3PON050K has 3 MPPT trackers with 7 input strings,

Model ELM3PON060K has 4 MPPT trackers with 8 input strings.

Except as noted, the model ELM3PON060K is as the representative test model in this report.

For IT system, the grid side is not grounded and the client side is protectively grounded, the wiring method is shown in the manual.


#### **Factory information:**

Afore New Energy Technology (Shanghai) Co., Ltd.

Building 7, No.333 Wanfang Rd, Minhang District, Shanghai. China. 201112



#### Copy of marking plate



#### Note:

- 1. The above markings are the minimum requirements required by the safety standard. For the final production samples, the additional markings which do not give rise to misunderstanding may be added.
- 2. Label is attached on the side surface of enclosure and visible after installation
- Other marking plate are identical to above, except the model's name and ratings
- 4. The information covered by on marking plate was irrelevant to this report.



## Page 8 of 87

|        | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |         |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
| Clause | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result - Remark                                                                                                                                                                                                                           | Verdict |  |  |
| 4      | Requirements on generating plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                           | Р       |  |  |
| 4.1    | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | This report is only evaluated and tested for generating unit; The generating plant incorporated with the generating unit shall further consider this clause and sub-clause.                                                               | N/A     |  |  |
| 4.2    | Connection scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Shall consider in final PGS                                                                                                                                                                                                               | N/A     |  |  |
| 4.3    | Choice of switchgear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           | Р       |  |  |
| 4.3.1  | General Switches shall be chosen based on the characteristics of the power system in which they are intended to be installed. For this purpose, the short circuit current at the installation point shall be assessed, taking into account, inter alia, the short circuit current contribution of the generating plant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                           | Р       |  |  |
| 4.3.2  | Interface switch Switches shall be power relays, contactors or mechanical circuit breakers each having a breaking and making capacity corresponding to the rated current of the generating plant and corresponding to the short circuit contribution of the generating plant. The short- time withstand current of the switching devices shall be coordinated with rated short circuit power at the point of connection. In case of loss of auxiliary supply power to the switchgear, a secure disconnection of the switch is required immediately.  Where means of isolation (according to HD 60364-5-551) is not required to be accessible to the DSO at all times, automatic disconnection with single fault tolerance according to 4.13 shall be provided. The function of the interface switch might be combined with either the main switch or the generating unit switch in a single switching device. In case of a combination, the single switching device shall be compliant to the requirements of both, the interface switch and the combined main switch or generating unit switch. As a consequence, at least two switches in series shall be present between any generating unit and the POC. | The interface switch is constructed of redundancy, made up of two series relays and power and control separately.  The EUT is a PV inverter, further evaluation refers to EN 62109–1 and EN 62109–2 with respect to the interface switch. | Р       |  |  |
| 4.4    | Normal operating range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                         | Р       |  |  |
| 4.4.1  | General Generating plants when generating power shall have the capability to operate in the operating ranges specified below regardless of the topology and the settings of the interface protection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           | Р       |  |  |



Page 9 of 87

|        | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |         |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|--|--|
| Clause | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Result - Remark          | Verdict |  |  |
| 4.4.2  | Operating frequency range The generating plant shall be capable of operating continuously when the frequency at the point of connection stays within the range of 49 Hz to 51 Hz. In the frequency range from 47 Hz to 52 Hz the generating plant should be capable of operating until the interface protection trips. Therefore, the generating plant shall at least be capable of operating in the frequency ranges, for the duration and for the minimum requirement as indicated in Table 1.  Respecting the legal framework, it is possible that for some synchronous areas more stringent time periods and/or frequency ranges will be required by the DSO and the responsible party. Nevertheless, they are expected to be within the boundaries of the stringent requirement as indicated in Table 1 unless producer, DSO, TSO and responsible party agree on wider frequency ranges and longer durations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | See appended table 4.4.2 | Р       |  |  |
| 4.4.3  | Minimal requirement for active power delivery at underfrequency  A generating plant shall be resilient to the reduction of frequency at the point of connection while reducing the maximum active power as little as possible.  The admissible active power reduction due to underfrequency is limited by the full line in Figure 5 and is characterized by a maximum allowed reduction rate of 10 % of Pmax per 1 Hz for frequencies below 49,5 Hz. It is possible that a more stringent power reduction characteristic is required by the responsible party.  Nevertheless this requirement is expected to be limited to an admissible active power reduction represented by the dotted line in Figure 5 which is characterised by a reduction rate of 2 % of the maximum power Pmax per 1 Hz for frequencies below 49 Hz.  If any technologies intrinsic design or ambient conditions have influence on the power reduction behaviour of the system, the manufacturer shall specify at which ambient conditions the requirements can be fulfilled and eventual limitations. The information can be provided in the format of a graph showing the intrinsic behaviour of the generating unit for example at different ambient conditions. The power reduction and the ambient conditions shall comply with the specification given by the responsible party. If the generating unit does not meet the power reduction at the specified ambient conditions, the producer and the responsible party | See appended table 4.4.3 | P       |  |  |



|         | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |         |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|
| Clause  | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result - Remark          | Verdict |
| 4.4.4   | Continuous operating voltage range When generating power, the generating plant shall be capable of operating continuously when the voltage at the point of connection stays within the range of 85 % Un to 110 % Un. Beyond these values the under and over voltage ride through immunity limits as specified in clause 4.5.3 and 4.5.4 shall apply.  In case of voltages below Un, it is allowed to reduce the apparent power to maintain the current limits of the generating plant. The reduction shall be as small as technically feasible.  For this requirement all phase to phase voltages and in case a neutral is connected, additionally all phase to neutral voltages shall be evaluated.                                                                                                                                                                    | See appended table 4.4.4 | Р       |
| 4.5     | Immunity to disturbances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Р       |
| 4.5.1   | General In general, generating plants should contribute to overall power system stability by providing immunity towards dynamic voltage changes unless safety standards require a disconnection. The following clauses describe the required immunity for generating plants taking into account the connection technology of the generating modules. The following withstand capabilities shall be provided regardless of the settings of the interface protection.                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Р       |
| 4.5.2   | Rate of change of frequency (ROCOF) immunity ROCOF immunity of a power generating plant means that the generating modules in this plant stay connected with the distribution network and are able to operate when the frequency on the distribution network changes with a specified ROCOF. The generating units and all elements in the generating plant that might cause their disconnection or impact their behaviour shall have this same level of immunity.  The generating modules in a generating plant shall have ROCOF immunity for a ROCOF equal or exceeding the value specified by the responsible party. If no ROCOF immunity value is specified, the following ROCOF immunity shall apply, making distinction between generating technologies:  Non-synchronous generating technology: at least 2 Hz/s Synchronous generating technology: at least 1 Hz/s | See appended table 4.5.2 | Р       |
| 4.5.3   | Under-voltage ride through (UVRT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | Р       |
| 4.5.3.1 | General Generating modules classified as type B modules according to COMMISSION REGULATION 2016/631 shall comply with the requirements of 4.5.3.2 and 4.5.3.3. Generating modules classified as type A and smaller according to COMMISSION REGULATION 2016/631 should comply with these requirements. The actual behaviour of type A modules and smaller shall be specified in the connection agreement. The requirements apply to all kinds of faults (1ph, 2ph and 3ph).                                                                                                                                                                                                                                                                                                                                                                                              |                          | Р       |



## Page 11 of 87

| EN 50549-1:2019 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |         |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|--|
| Clause          | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result - Remark          | Verdict |  |
| 4.5.3.2         | Generating plant with non-synchronous generating technology Generating modules shall be capable of remaining connected to the distribution network as long as the voltage at the point of connection remains above the voltage-time curve of Figure 6. The voltage is relative to Un. The smallest phase to neutral voltage, or if no neutral is present, the smallest phase to phase voltage shall be evaluated. The responsible party may define a different UVRT characteristic. Nevertheless, this requirement is expected to be limited to the most stringent curve as indicated in Figure 6. This means that the whole generating module has to comply with the UVRT requirement. This includes all elements in a generating plant: the generating units and all elements that might cause their disconnection.  For the generating unit, this requirement is considered to be fulfilled if it stays connected to the distribution grid as long as the voltage at its terminals remains above the defined voltage-time diagram.  After the voltage returns to continuous operating voltage range, 90 % of pre-fault power or available power whichever is the smallest shall be resumed as fast as possible, but at the latest within 1 s unless the DSO and the responsible party requires another value. | See appended table 4.5.3 | P       |  |
| 4.5.3.3         | Generating plant with synchronous generating technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | N/A     |  |
| 4.5.4           | Over-voltage ride through (OVRT) Generating modules, except for micro-generating plants, shall be capable of staying connected to the distribution network as long as the voltage at the point of connection remains below the voltage-time curve of Figure 8.  The highest phase to neutral voltage or if no neutral is present the highest phase to phase voltage shall be evaluated.  This means that not only the generating units shall comply with this OVRT requirement but also all elements in a generating plant that might cause its disconnection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | See appended table 4.5.4 | Р       |  |
| 4.6             | Active response to frequency deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ı                        | Р       |  |



Page 12 of 87

|        | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|
| Clause | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result - Remark          | Verdict |
| 4.6.1  | Power response to overfrequency Generating plants shall be capable of activating active power response to overfrequency at a programmable frequency threshold f <sub>1</sub> at least between and including 50,2 Hz and 52 Hz with a programmable droop in a range of at least s=2 % to s=12 %. The droop reference is P <sub>ref</sub> . Unless defined differently by the responsible party: • P <sub>ref</sub> =P <sub>max</sub> , in the case of synchronous generating technology and electrical energy storage systems. • P <sub>ref</sub> =P <sub>M</sub> , the actual AC output power at the instant when the frequency reaches the threshold f <sub>1</sub> , in the case of all other non-synchronous generating technology The power value calculated according to the droop is a maximum power limit. If e.g. the available primary power decreases during a high frequency period below the power defined by the droop function, lower power values are permitted.  The generating plant shall be capable of activating active power response to overfrequency as fast as technically feasible with an intrinsic dead time that shall be as short as possible with an intrinsic dead time that shall be as short as possible with a maximum of 2 s and with a step response time of maximum 30 s, unless another value is defined by the relevant party.  An intentional delay shall be programmable to adjust the dead time to a value between the intrinsic dead time and 2 s. After activation, the active power frequency response shall use the actual frequency at any time, reacting to any frequency increase or decrease according to the programmed droop with an accuracy of ± 10 % of the nominal power (see Figure 9). The resolution of the frequency measurement shall be ± 10 mHz or less. The accuracy is evaluated with a 1 min average value. At POC, loads if present in the producer's network might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant. | See appended table 4.6.1 | P       |
|        | Generating plants reaching their minimum regulating level shall, in the event of further frequency increase, maintain this power level constant unless the DSO and the responsible party requires to disconnect the complete plant or if the plant consists of multiple units by disconnecting individual units. The active power frequency response is only deactivated if the frequency falls below the frequency threshold f1. If required by the DSO and the responsible party an additional deactivation threshold frequency fstop shall be programmable in the range of at least 50 Hz to f1. If fstop is configured to a frequency below f1 there shall be no response according to the droop in case of a frequency decrease (see Figure 10).  The output power is kept constant until the frequency falls below fstop for a configurable time tstop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | Р       |

TRF originator: Intertek Shanghai



## Page 13 of 87

|        | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |         |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|--|
| Clause | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result - Remark | Verdict |  |
|        | If at the time of deactivation of the active power frequency response the momentary active power PM is below the available active power PA, the active power increase of the generating plant shall not exceed the gradient defined in 4.10.2.  Settings for the threshold frequency f <sub>1</sub> , the droop and the intentional delay are provided by the DSO and the responsible party. If no settings are provided, the default settings in Table 2 should be applied.                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | Р       |  |
|        | The enabling and disabling of the function and its settings shall be field adjustable and means shall be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO and the responsible party.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Р       |  |
|        | Alternatively for the droop function described above, the following procedure is allowed for generating modules if permitted by the DSO and the responsible party:  • the generating units shall disconnect at randomized frequencies, ideally uniformly distributed between the frequency threshold f1 and 52 Hz;  • in case the frequency decreases again, the generating unit shall start its reconnection procedure once the frequency falls below the specific frequency that initiated the disconnection; for this procedure, the connection conditions described in 4.10 do not apply;  • the randomization shall either be at unit level by changing the threshold over time, or on plant level by choosing different values for each unit within a plant, or on distribution system level if the DSO specifies a specific threshold for each plant or unit connected to its distribution system. |                 | Р       |  |
|        | EES units that are in charging mode at the time the frequency passes the threshold f <sub>1</sub> shall not reduce the charging power below P <sub>M</sub> until frequency returns below f <sub>1</sub> . Storage units should increase the charging power according to the configured droop. In case the maximum charging capacity is reached or to prevent any other risk of injury or damage of equipment, a reduction of charging power is permitted.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | N/A     |  |

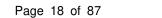


| EN 50549-1:2019 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|--|
| Clause          | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result - Remark | Verdict |  |
| 4.6.2           | Power response to underfrequency EES units shall be capable of activating active power response to underfrequency. Other generating units/plants should be capable of activating active power response to underfrequency. If active power to underfrequency is provided by a generating plant/unit, the function shall comply with the requirements below.  Active power response to underfrequency shall be provided when all of the following conditions are met:  • when generating, the generating unit is operating at active power below its maximum active power Pmax;  • when generating, the generating unit is operating at active power below the available active power PA;  • the voltages at the point of connection of the generating plant are within the continuous operating voltage range;  • when generating, the generating unit is operating with currents lower than its current limit.  In the case of EES units, active power frequency response to underfrequency shall be provided in charging and generating mode. |                 | N/A     |  |
|                 | The active power response to underfrequency shall be delivered at a programmable frequency threshold f <sub>1</sub> at least between and including 49,8 Hz and 46,0 Hz with a programmable droop in a range of at least 2 % to 12 %. The droop reference P <sub>ref</sub> is P <sub>max</sub> . If the available primary power or a local set value increases during an underfrequency period above the power defined by the droop function, higher power values are permitted. The power value calculated according to the droop is therefore a minimum limit.  The generating unit shall be capable of activating active power response to underfrequency as fast as technically feasible with an intrinsic dead time that shall be as short as possible with a maximum of 2 s and with a step response time of maximum 30 s unless another value is defined by the relevant party.  An intentional initial delay shall be programmable to adjust the dead time to a value between the intrinsic dead time and                               |                 | N/A     |  |
|                 | After activation, the active power frequency response shall use the actual frequency at any time, reacting to any frequency increase or decrease according to the programmed droop with an accuracy of ± 10 % of the nominal power. The accuracy is evaluated with a 1 min average value. The resolution of the frequency measurement shall be ± 10 mHz or less. At POC loads, if present in the producer's network, might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant.                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | N/A     |  |
|                 | Generating modules reaching any of the conditions above during the provision of active power frequency response shall, in the event of further frequency decrease, maintain this power level constant.  The active power frequency response is only deactivated if the frequency increases above the frequency threshold f1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | N/A     |  |



## Page 15 of 87

|         | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |         |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|--|
| Clause  | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result - Remark | Verdict |  |
|         | Settings for the threshold frequency f <sub>1</sub> , the droop and the intentional delay are defined by the DSO and the responsible party, if no settings are provided, the function shall be disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | N/A     |  |
|         | The activation and deactivation of the function and its settings shall be field adjustable and means shall be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO and the responsible party.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | N/A     |  |
| 4.7     | Power response to voltage changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | Р       |  |
| 4.7.1   | General When the contribution to voltage support is required by the DSO and the responsible party, the generating plant shall be designed to have the capability of managing reactive and/or active power generation according to the requirements of this clause.                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Р       |  |
| 4.7.2   | Voltage support by reactive power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | Р       |  |
| 4.7.2.1 | General Generating plants shall not lead to voltage changes out of acceptable limits. These limits should be defined by national regulation. Generating units and plants shall be able to contribute to meet this requirement during normal network operation. Throughout the continuous operating frequency (see 4.4.2) and voltage (see 4.4.4) range, the generating plant shall be capable to deliver the requirements stipulated below. Outside these ranges, the generating plant shall follow the requirements as good as technically feasible although there is no specified accuracy required.                                                                                                 |                 | Р       |  |
| 4.7.2.2 | Capabilities Unless specified differently below, for specific generating technologies, generating plants shall be able to operate with active factors as defined by the DSO and the responsible party from active factor = 0,90underexcited to active factor=0,90overexcited The reactive power capability shall be evaluated at the terminals of the/each generating unit                                                                                                                                                                                                                                                                                                                             |                 | Р       |  |
|         | CHP generating units with a capacity $\leq$ 150 kVA shall be able to operate with active factors as defined by the DSO from cos $\phi = 0.95$ <sub>underexcited</sub> to $\cos \phi = 0.95$ <sub>overexcited</sub> Generating units with an induction generator coupled directly to the grid and used in generating plants above micro generating level, shall be able to operate with active factors as defined by the DSO from $\cos \phi = 0.95$ <sub>underexcited</sub> to $\cos \phi = 1$ at the terminals of the unit. Deviating from 4.7.2.3 only the $\cos \phi$ set point mode is required. Deviating from the accuracy requirements below, the accuracy is only required at active power PD. |                 | N/A     |  |
|         | Generating units with an induction generator coupled directly to the grid and used in micro generating plants shall operate with an active factor above 0,95 at the terminals of the generating unit. A controlled voltage support by reactive power is not required from this technology.                                                                                                                                                                                                                                                                                                                                                                                                             |                 | N/A     |  |
|         | Generating units with linear generators, coupled directly and synchronously to the grid shall operate with an active factor above 0,95 at the terminals of the generating unit, and therefore a controlled voltage support by reactive power is not required from this technology.                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | N/A     |  |




## Page 16 of 87

|        | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |         |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|--|--|
| Clause | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result - Remark | Verdict |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |         |  |  |
|        | In case of different generating technologies with different requirements in one generating plant, each unit shall provide voltage support by reactive power as required for its specific technology. A compensation of one technology to reach the general plant requirement is not expected.  The DSO and the responsible party may relax the above requirements. This relaxation might be general or specific for a certain generating plant or generating technology. |                 | N/A     |  |  |



| EN 50549-1:2019 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |         |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|--|
| Clause          | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Result - Remark | Verdict |  |
|                 | All involved parties can expect to have access to information documenting the actual choices regarding active power capabilities relative to reactive power requirements and related to the power rating in the operating voltage range (see further in this clause). A P-Q Diagram shall be included in the product documentation of a generating unit. When operating above the apparent power threshold Smin equal to 10 % of the maximum apparent power Smax or the minimum regulating level of the generating plant, whichever is the higher value, the reactive power capability shall be provided with an accuracy of ± 2 % Smax. Up to this apparent power threshold Smin, deviations above 2 % are permissible; nevertheless the accuracy shall always be as good as technically feasible and the exchange of uncontrolled reactive power in this low-power operation mode shall not exceed 10 % of the maximum apparent power Smax. At POC loads, if present in the producer's network might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant. For generating units with a reactive power capability at active power PD shall be at least according Figure 13. For generating units with a reduced reactive power capability Figure 13 is only applicable up to the maximum reactive power capability. |                 | P       |  |
| 4.7.2.3         | Control modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | Р       |  |
| 4.7.2.3.1       | <ul> <li>General</li> <li>Where required, the form of the contribution to voltage control shall be specified by the DSO.</li> <li>The control shall refer to the terminals of the generating units The generating plant/unit shall be capable of operating in the control modes specified below within the limits specified in 4.7.2.2. The control modes are exclusive; only one mode may be active at a time.</li> <li>Q setpoint mode</li> <li>Q (U)</li> <li>Cos φ setpoint mode</li> <li>Cos φ (P)</li> <li>For mass market products, it is recommended to implement all control modes. In case of site specific generating plant design, only the control modes required by the DSO need to be implemented.</li> <li>The configuration, activation and deactivation of the control modes shall be field adjustable. For field adjustable configurations and activation of the active control mode, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO. Which control modes are available in a product and how they are configured shall be stated in the product documentation.</li> </ul>                                                                                                                                                                                                                                                                            |                 | Р       |  |





|           | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |         |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|--|--|
| Clause    | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result - Remark          | Verdict |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |         |  |  |
| 4.7.2.3.2 | Setpoint control modes Q setpoint mode and $\cos \phi$ setpoint mode control the reactive power output and the $\cos \phi$ of the output respectively, according to a set point set in the control of the generating plant/unit. In the case of change of the set point local or by remote control the settling time for the new set point shall be less than one minute.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | See appended table 4.7.2 | Р       |  |  |
| 4.7.2.3.3 | Voltage related control mode The voltage related control mode Q (U) controls the reactive power output as a function of the voltage. There is no preferred state of the art for evaluating the voltage. Therefore it is the responsibility of the generating plant designer to choose a method. One of the following methods should be used: • the positive sequence component of the fundamental. • the average of the voltages measured independently for each phase to neutral or phase to phase. • phase independently the voltage of every phase to determine the reactive power for every phase.                                                                                                                                                                                                                                                           | Method 2 used            | р       |  |  |
|           | For voltage related control modes, a characteristic with a minimum and maximum value and three connected lines according to Figure 16 shall be configurable. In addition to the characteristic, further parameters shall be configurable:  • The dynamics of the control shall correspond with a first order filter having a time constant that is configurable in the range of 3 s to 60 s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | See appended table 4.7.2 | Р       |  |  |
|           | To limit the reactive power at low active power two methods shall be configurable:  • a minimal cos φ shall be configurable in the range of 0-0,95;  • two active power levels shall be configurable both at least in the range of 0 % to 100 % of P <sub>D</sub> . The lock-in value turns the Q(U) mode on, the lock-out value turns Q(U) off. If lock-in is larger than lock-out a hysteresis is given. See also Figure 14. The static accuracy shall be in accordance with 4.7.2.2. The dynamic accuracy shall be in accordance with Figure 15 with a maximum tolerance of +/- 5% of P <sub>D</sub> plus a time delay of up to 3 seconds deviating from an ideal first order filter response.                                                                                                                                                                |                          | Р       |  |  |
| 4.7.2.3.4 | Power related control mode The power related control mode cos $\varphi$ (P) controls the cos $\varphi$ of the output as a function of the active power output. For power related control modes, a characteristic with a minimum and maximum value and three connected lines shall be configurable in accordance with Figure 16. Resulting from a change in active power output a new cos $\varphi$ set point is defined according to the set characteristic. The response to a new cos $\varphi$ set value shall be as fast as technically feasible to allow the change in reactive power to be in synchrony with the change in active power. The new reactive power set value shall be reached at the latest within 10 s after the end value of the active power is reached. The static accuracy of each cos $\varphi$ set point shall be according to 4.7.2.2. | See appended table 4.7.2 | Р       |  |  |

TRF originator: Intertek Shanghai

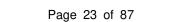


## Page 19 of 87

|         | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |         |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|--|--|
| Clause  | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result - Remark          | Verdict |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |         |  |  |
| 4.7.3   | Voltage related active power reduction In order to avoid disconnection due to overvoltage protection (see 4.9.2.3 and 4.9.2.4), generating plants/units are allowed to reduce active power output as a function of this rising voltage. The final implemented logic can be chosen by the manufacturer. Nevertheless, this logic shall not cause steps or oscillations in the output power. The power reduction caused by such a function may not be faster than an equivalent of a time constant tau = 3 s (= 33%/s at a 100% change). The enabling and disabling of the function shall be field adjustable and means have to be provided to protect the setting from unpermitted interference (e.g. password or seal) if required by the DSO. | See appended table 4.7.3 | Р       |  |  |
| 4.7.4   | Short circuit current requirements on generating plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | Р       |  |  |
| 4.7.4.1 | General The following clauses describe the required short circuit current contribution for generating plants taking into account the connection technology of the generating modules. Generating modules classified as type B modules according to COMMISSION REGULATION 2016/631 shall comply with the requirements of 4.7.4.2 and 4.7.4.3. Generating modules classified as type A according to COMMISSION REGULATION 2016/631 should comply with these requirements.  The actual behaviour of type A modules shall be specified in the connection agreement.                                                                                                                                                                                |                          | Р       |  |  |

| EN 50549-1:2019 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                  |         |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| Clause          | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result - Remark                                                                                                                                  | Verdict |  |
| 4.7.4.2         | Generating plant with non-synchronous generating techn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nology                                                                                                                                           | Р       |  |
| 4.7.4.2.1       | Voltage support during faults and voltage steps In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generating plants of type B connected to LV distribution grids, the clause 4.7.4 of EN 50549-2 applies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Only EN 50549-1<br>applies, if required<br>by the responsible<br>party for additional<br>reactive current, the<br>EN 50549-2 shall be<br>applied | Р       |  |
| 4.7.4.2.2       | Zero current mode for converter connected generating technology  If UVRT capability (see 4.5.3) is provided additional to the requirements of 4.5, generating units connected to the grid by a converter shall have the capability to reduce their current as fast as technically feasible down to or below 10 % of the rated current when the voltage is outside of a static voltage range. Generating units based on a doubly fed induction machine can only reduce the positive sequence current below 10 % of the rated current. Negative sequence current shall be tolerated during unbalanced faults. In case this current reduction is not sufficient, the DSO should choose suitable interface protection settings.  The static voltage range shall be adjustable from 20 % to 100 % of Un for the undervoltage boundary and from 100 % to 130 % of Un for the overvoltage boundary. The default setting shall be 50% of Un for the undervoltage boundary. Each phase to neutral voltage or if no neutral is present each phase to phase voltage shall be evaluated. At voltage re-entry into the voltage range, 90% of pre-fault power or available power, whichever is the smallest, shall be resumed as fast as possible, but at the latest according to 4.5.3 and 4.5.4. All described settings are defined by the DSO and the responsible party. If no settings are provided, the function shall be disabled.  The enabling and disabling and the settings shall be field adjustable and means have to be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO. | Test with 4.5.3                                                                                                                                  | Р       |  |
| 4.7.4.2.3       | Induction generator based units In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  | N/A     |  |




## Page 21 of 87

| Oleman  | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Docult Damard   | \/a::al!::1 |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|
| Clause  | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result - Remark | Verdict     |
| 4.7.4.3 | Generating plant with synchronous generating technology - Synchronous generator based units In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generating plants of type B connected to LV distribution grids, the clause 4.7.4 of EN50549-2 applies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Р           |
| 4.8     | EMC and power quality Similar to any other apparatus or fixed installation, generating units shall comply with the requirements on electromagnetic compatibility established in Directive 2014/30/EU or 2014/53/EU, whichever applies. EMC limits and tests, described in EN 61000 series, have been traditionally developed for loads, without taking into account the particularities of generating units, such as their capability to create overvoltages or high frequency disturbances due to the presence of power converters, which were either impossible or less frequent in case of loads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | Р           |
| 4.9     | Interface protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | Р           |
| 4.9.1   | General According to HD 60364-5-551:2010, 551.7.4, means of automatic switching shall be provided to disconnect the generating plant from the distribution network in the event of loss of that supply or deviation of the voltage or frequency at the supply terminals from values declared for normal supply. This automatic means of disconnection has following main objectives:  • prevent the power production of the generating plant to cause an overvoltage situation in the distribution network it is connected to. Such overvoltages could result in damages to the equipment connected to the distribution network as well as the distribution network itself;  • detect unintentional island situations and disconnect the generating plant in this case. This is contributing to prevent damage to other equipment, both in the producers' installations and the distribution network due to out of phase re-closing and to allow for maintenance work after an intentional disconnection of a section of the distribution network.  • assist in bringing the distribution network to a controlled state in case of voltage or frequency deviations beyond corresponding regulation values. |                 | Р           |



## Page 22 of 87

| 01     | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                            | .,      |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------|
| Clause | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Result - Remark                                                                                                            | Verdict |
|        | disconnect the generating plant from the distribution network in case of faults internal to the power generating plant. Protection against internal faults (short-circuits) shall be coordinated with network protection, according to DSO protection criteria. Protection against e.g. overload, electric shock and against fire hazards shall be implemented additionally according to HD 60364-1 and local requirements.  • prevent damages to the generating unit due to incidents (e.g. short circuits) on the distribution network Interface protections may contribute to preventing damage to the generating units due to out-of-phase reclosing of automatic reclosing which may happen after some hundreds of ms. However, in some countries some technologies of generating units are explicitly required to have an appropriate immunity level against the consequences of out-of-phase reclosing. The type of protection and the sensitivity and operating times depend upon the protection and the characteristics of the distribution network. A wide variety of approaches to achieve the above mentioned objectives is used throughout Europe. Besides the passive observation of voltage and frequency other active and passive methods are available and used to detect island situations. The requirements given in this clause are intended to provide the necessary functions for all known approaches as well as to give guidance in their use. Which functions are available in a product shall be stated in the product documentation. |                                                                                                                            | Р       |
|        | The interface protection system shall comply with the requirements of this European Standard, the available functions and configured settings shall comply with the requirements of the DSO and the responsible party. In any case, the settings defined shall be understood as the values for the interface protection system, i.e. where there is a wider technical capability of the generation module, it shall not be withheld by the settings of the protections (other than the interface protection). For micro generating plants, the interface protection system and the point of measurement might be integrated into the generating units. For generating plants with nominal current above 16 A the DSO may define a threshold above which the interface protection system shall be realized as a dedicated device and not integrated into the generating units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Integrated into the generating units If specified by country requirement, the interface protection shall not be integrated | Р       |





| EN 50549-1:2019 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |         |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|--|
| Clause          | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result - Remark          | Verdict |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |         |  |
|                 | to place the protection system as close to the point of connection as possible, to avoid tripping due to overvoltages resulting from the voltage rise within the producer's network;  • to allow for periodic field tests. In some countries periodic field tests are not required if the protection system meets the requirements of single fault safety.  The interface protection relay acts on the interface switch. The DSO may require that the interface protection relay acts additionally on another switch with a proper delay in case the interface switch fails to operate.  In case of failure of the power supply of the interface protection, the interface protection shall trigger the interface switch without delay. An uninterruptible power supply may be required by the DSO, for instance in case of UVRT capability, delay in protection etc.  In case of field adjustable settings of threshold and operation time, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO. |                          | Р       |  |
| 4.9.2           | Void                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | N/A     |  |
| 4.9.3           | Requirements on voltage and frequency protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | See appended table 4.9.3 | Р       |  |
| 4.9.3.1         | General Part or all of the following described functions may be required by the DSO and the responsible party. In case of three phase generating units/plants and in all cases when the protection system is implemented as an external protection system in a three phase power supply system, all phase to phase voltages and, if a neutral conductor is present, all phase to neutral voltages shall be evaluated.  The frequency shall be evaluated on at least one of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | Р       |  |
|                 | voltages.  If multiple signals (e.g. 3 phase to phase voltages) are to be evaluated by one protection function, this function shall evaluate all of the signals separately. The output of each evaluation shall be OR connected, so that if one signal passes the threshold of a function, the function shall trip the protection in the specified time.  The minimum required accuracy for protection is: • for frequency measurement ± 0,05 Hz; • for voltage measurement ± 1 % of Un. • The reset time shall be ≤50ms • The interface protection relay shall not conduct continuous starting and disengaging operations of the interface protection relay. Therefore a reasonable reset ratio shall be implemented which shall not be zero but be below 2% of nominal value for voltage and below 0,2Hz for frequency.                                                                                                                                                                                                                                                  |                          | Р       |  |



## Page 24 of 87

|         | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |         |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|--|--|
| Clause  | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Result - Remark            | Verdict |  |  |
| 4.9.3.2 | Undervoltage protection [27] The protection shall comply with EN 60255-127. The evaluation of the r.m.s. or the fundamental value is allowed. Undervoltage protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.  Undervoltage threshold stage 1 [27 < ]:  • Threshold (0,2 – 1) <i>U<sub>n</sub></i> adjustable by steps of 0,01 <i>U<sub>n</sub></i> • Operate time (0,1 – 100) s adjustable in steps of 0,1 s Undervoltage threshold stage 2 [27 < < ]:  • Threshold (0,2 – 1) <i>U<sub>n</sub></i> adjustable by steps of 0,01 <i>U<sub>n</sub></i> • Operate time (0,1 – 5) s adjustable in steps of 0,05 s The undervoltage threshold stage 2 is not applicable for micro-generating plants | See appended table 4.9.3.2 | Р       |  |  |
| 4.9.3.3 | Overvoltage protection [59]  The protection shall comply with EN 60255-127. The evaluation of the r.m.s. or the fundamental value is allowed. Overvoltage protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.  Overvoltage threshold stage 1 [59 > ]:  • Threshold (1,0 – 1,2) <i>U<sub>n</sub></i> adjustable by steps of 0,01 <i>U<sub>n</sub></i> • Operate time (0,1 – 100) s adjustable in steps of 0,1 s  Overvoltage threshold stage 2 [59 > >]:  • Threshold (1,0 – 1,30) <i>U<sub>n</sub></i> adjustable by steps of 0,01 <i>U<sub>n</sub></i> • Operate time (0,1 – 5) s adjustable in steps of 0,05 s                                                                                | See appended table 4.9.3.3 | Р       |  |  |
| 4.9.3.4 | Overvoltage 10 min mean protection  The calculation of the 10 min value shall comply with the 10 min aggregation of EN 61000-4-30 Class S, but deviating from EN 61000-4-30 as a moving window is used. Therefore the function shall be based on the calculation of the square root of the arithmetic mean of the squared input values over 10 min. The calculation of a new 10 min value at least every 3 s is sufficient, which is then to be compared with the threshold value.  • Threshold (1,0 − 1,15) Un adjustable by steps of 0,01 Un • Start time ≤ 3s not adjustable  • Time delay setting = 0 ms                                                                                                                                                                                                          | See appended table 4.9.3.4 | P       |  |  |



|         | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                          |         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|
| Clause  | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result - Remark            | Verdict |
| 4.9.3.5 | Underfrequency protection [81 < ] Underfrequency protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows. Underfrequency threshold stage 1 [81 < ]: • Threshold (47,0 – 50,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 – 100) s adjustable in steps of 0,1 s Underfrequency threshold stage 2 [81 < < ]: • Threshold (47,0 – 50,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 – 5) s adjustable in steps of 0,05 s In order to use narrow frequency thresholds for islanding detection (see 4.9.3.3) it may be required to have the ability to activate and deactivate a stage by an external signal. The frequency protection shall function correctly in the input voltage range between 20 % Un and 120 % Un and shall be inhibited for input voltages of less than 20 % Un. Under 0,2 Un the frequency protection is inhibited. Disconnection may only happen based on undervoltage | See appended table 4.9.3.5 | Р       |
| 4.9.3.6 | Overfrequency protection [81 > ]  Overfrequency protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.  Overfrequency threshold stage 1 [81 > ]:  • Threshold (50,0 - 52,0) Hz adjustment by steps of 0,1 Hz  • Operate time (0,1 − 100) s adjustable in steps of 0,1 s Overfrequency threshold stage 2 [81 > >]:  • Threshold (50,0 - 52,0) Hz adjustment by steps of 0,1 Hz  • Operate time (0,1 - 5) s adjustment by steps of 0,05 s In order to use narrow frequency thresholds for islanding detection (see4.9.3.3) it may be required to have the ability to activate and deactivate a stage by an external signal. The frequency protection shall function correctly in the input voltage range between 20 % Un and 120 % Un and shall be inhibited for input voltages of less than 20 % Un.                                                                                                         | See appended table 4.9.3.6 | Р       |
| 4.9.4   | Means to detect island situation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | Р       |
| 4.9.4.1 | sides the passive observation of voltage and frequency further means to detect an island may be required by the DSO. Detecting islanding situations shall not be contradictory to the immunity requirements of 4.5. Commonly used functions include:  • Active methods tested with a resonant circuit;  • ROCOF tripping;  • Switch to narrow frequency band;  • Vector shift  • Transfer trip.  Only some of the methods above rely on standards. Namely for ROCOF tripping and for the detection of a vector shift, also called a vector jump, currently no European Standard is available.                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | Р       |
| 4.9.4.2 | Active methods tested with a resonant circuit These are methods which pass the resonant circuit test for PV inverters according to EN 62116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | See appended table 4.9.4   | Р       |



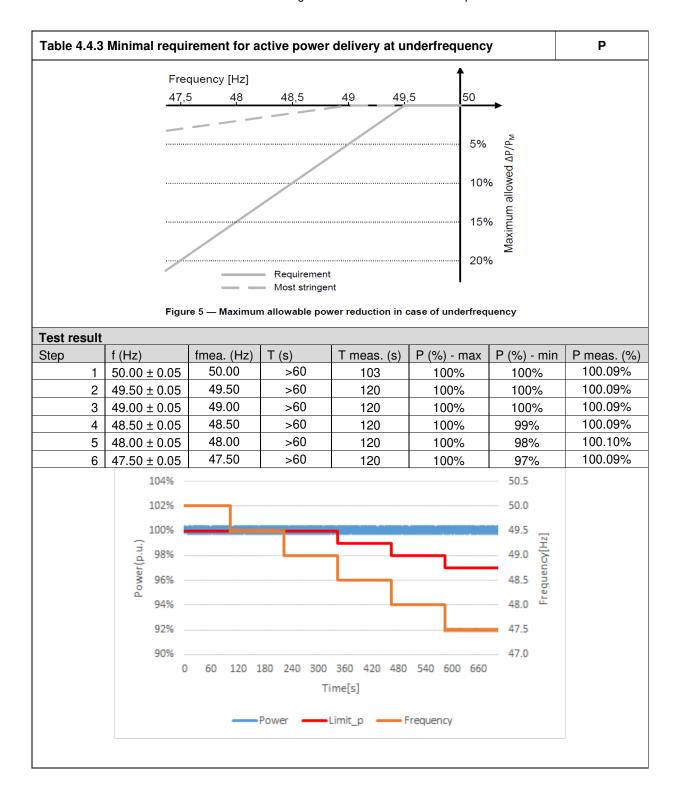
| EN 50549-1:2019 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |         |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------|--|--|
| Clause          | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result - Remark           | Verdict |  |  |
| 4.9.4.3         | Switch to narrow frequency band (see Annex E and Annex F) In case of local phenomena (e.g. a fault or the opening of circuit breaker along the line) the DSO in coordination with the responsible party may require a switch to a narrow frequency band to increase the interface protection relay sensitivity. In the event of a local fault it is possible to enable activation of the restrictive frequency window (using the two underfrequency/overfrequency thresholds described in 4.9.2.5 and 4.9.2.6) correlating its activation with another additional protection function.  If required by the DSO, a digital input according to 4.9.4 shall be available to allow the DSO the activation of a restrictive frequency window by communication.  Digital input to the interface protection                                                                                                                                                                                                                                                                        |                           | Р       |  |  |
| 4.9.5           | If required by the DSO, the interface protection shall have at least two configurable digital inputs.  These inputs can for example be used to allow transfer trip or the switching to the narrow frequency band.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | Р       |  |  |
| 4.10            | Connection and starting to generate electrical power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | Р       |  |  |
| 4.10.1          | General Connection and starting to generate electrical power is only allowed after voltage and frequency are within the allowed voltage and frequency ranges for at least the specified observation time. It shall not be possible to overrule these conditions.  Within these voltage and frequency ranges, the generating plant shall be capable of connecting and starting to generate electrical power.  The setting of the conditions depends on whether the connection is due to a normal operational startup or an automatic reconnection after tripping of the interface protection. In case the settings for automatic reconnection after tripping and starting to generate power are not distinct in a generating plant, the tighter range and the start-up gradient shall be used.  The frequency range, the voltage range, the observation time and the power gradient shall be field adjustable.  For field adjustable settings, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO. |                           | Р       |  |  |
| 4.10.2          | Automatic reconnection after tripping The frequency range, the voltage range, the observation time shall be adjustable in the range according to Table 3 column 2. If no settings are specified by the DSO and the responsible party, the default settings for the reconnection after tripping of the interface protection are according to Table 3 column 3. After reconnection, the active power generated by the generating plant shall not exceed a specified gradient expressed as a percentage of the active nominal power of the unit per minute. If no gradient is specified by the DSO and the responsible party, the default setting is 10 % P <sub>n</sub> /min. Generating modules for which it is technically not feasible to increase the power respecting the specified gradient over the full power range may connect after 1 min to 10 min (randomized value, uniformly distributed) or later.                                                                                                                                                             | See appended table 4.10.2 | Р       |  |  |



| EN 50549-1:2019 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |         |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------|--|
| Clause          | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Result - Remark                                        | Verdict |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |         |  |
| 4.10.3          | Starting to generate electrical power  The frequency range, the voltage range, the observation time shall be adjustable in the range according to Table 4 column 2. If no settings are specified by the DSO and the responsible party, the default settings for connection or starting to generate electrical power due to normal operational startup or activity are according to Table 4 column 3. If applicable, the power gradient shall not exceed the maximum gradient specified by the DSO and the responsible party. Heat driven CHP generating units do not need to keep a maximum gradient, since the start up is randomized by the nature of the heat demand.  For manual operations performed on site (e.g. for the purpose of initial start-up or maintenance) it is permitted to deviate from the observation time and ramp rate.                       | See appended table 4.10.3 Default settings are applied | Р       |  |
| 4.10.4          | Synchronization Synchronizing a generating plant/unit with the distribution network shall be fully automatic i.e. it shall not be possible to manually close the switch between the two systems to carry out synchronization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | Р       |  |
| 4.11            | Ceasing and reduction of active power on set point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | Р       |  |
| 4.11.1          | Ceasing active power Generating plants with a maximum capacity of 0,8 kW or more shall be equipped with a logic interface (input port) in order to cease active power output within five seconds following an instruction being received at the input port. If required by the DSO and the responsible party, this includes remote operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | See appended table 4.11                                | р       |  |
| 4.11.2          | Reduction of active power on set point For generating modules of type B, a generating plant shall be capable of reducing its active power to a limit value provided remotely by the DSO. The limit value shall be adjustable in the complete operating range from the maximum active power to minimum regulating level.  The adjustment of the limit value shall be possible with a maximum increment of 10% of nominal power.  A generation unit/plant shall be capable of carrying out the power output reduction to the respective limit within an envelope of not faster than 0,66 % <i>P</i> n/ s and not slower than 0,33 % <i>P</i> n/ s with an accuracy of 5 % of nominal power.  Generating plants are permitted to disconnect from the network at a limit value below it minimum regulating level. If required by the DSO, this includes remote operation. | See appended table 4.11                                | Р       |  |
| 4.12            | Remote information exchange Generating plants whose power is above a threshold to be determined by the DSO and the responsible party shall have the capacity to be monitored by the DSO or TSO control centre or control centres as well as receive operation parameter settings for the functions specified in this European Standard from the DSO or TSO control centre or control centres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | N/A     |  |



Page 28 of 87


|         | EN 50549-1:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|
| Clause  | Requirement - Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result - Remark | Verdict |
| 4.13    | Requirements regarding single fault tolerance of interface protection system and interface switch  If required in 4.3.2, the interface protection system and the interface switch shall meet the requirements of single fault tolerance.  A single fault shall not lead to a loss of the safety functions. Faults of common cause shall be taken into account if the probability for the occurrence of such a fault is significant. Whenever reasonably practical, the individual fault shall be displayed and lead to the disconnection of the power generating unit or system.  Series-connected switches shall each have a independent breaking capacity corresponding to the rated current of the generating unit and corresponding to the short circuit contribution of the generating unit.  The short-time withstand current of the switching devices shall be coordinated with maximum short circuit power at the connection point.  At least one of the switches shall be a switch-disconnector suitable for overvoltage category 2. For single-phase generating units, the switch shall have one contact of this overvoltage category for both the neutral conductor and the line conductor. For poly-phase generating units, it is required to have one contact of this overvoltage category for all active conductors. The second switch may be formed of electronic switching components from an inverter bridge or another circuit provided that the electronic switching components can be switched off by control signals and that it is ensured that a failure is detected and leads to prevention of the operation at the latest at the next reconnection.  For PV-inverters without simple separation between the network and the PV generating unit (e.g. PV Inverter without transformer) both switches mentioned in the paragraph above shall be switchdisconnectors with the requirements described therein, although one switching device is permitted to be located between PV array and PV inverter. |                 | P       |
| Annex A | Interconnection guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | Info    |
| Annex B | Void                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | Info    |
| Annex C | Parameter Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Info    |
| Annex D | List of national requirements applicable for generating plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | Info    |
| Annex E | Loss of Mains and overall power system security                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Info    |
| Annex F | Examples of protection strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | Info    |
| Annex H | Relationship between this European standard and the COMMISSION REGULATION (EU) 2016/631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | Info    |

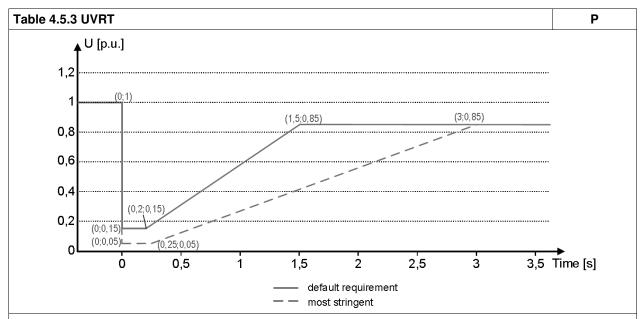


## **Appendices Table-Testing Result**

| Table 4.4.2 Ope | rating frequency rang                          | je  |                     |                          |            |               | Р                        |
|-----------------|------------------------------------------------|-----|---------------------|--------------------------|------------|---------------|--------------------------|
|                 | Frequency ran                                  | ge  |                     | for operation equirement |            |               | for operation equirement |
|                 | 47.0 Hz – 47.5 l                               | Hz  | Not re              | quired                   |            | 2             | 0s                       |
|                 | 47.5 Hz - 48.5h                                | łz  | 30 r                | nin <sup>a</sup>         |            | 90            | min                      |
|                 | 48.5 Hz - 49.0 l                               | Ηz  | 30 r                | nin <sup>a</sup>         |            | 90 ı          | min <sup>a</sup>         |
| Requirement     | 49.0 Hz - 51.0 H                               | Ηz  | Unlir               | nited                    |            | Unli          | mited                    |
|                 | 51.0 Hz - 51.5 l                               | Нz  | 30 r                | nin <sup>a</sup>         |            | 90            | min                      |
|                 | 51.5 Hz - 52.0 H                               | Нz  | Not re              | quired                   |            | 15            | min                      |
|                 | a: Respecting the leg<br>The responsible party |     |                     |                          | ne period: | s are         | required by              |
| Frequency (Hz)  | F (Hz)- measure                                | Tin | ne (S)-limit        | Time (S)                 |            |               | Result                   |
| 47.00           | 47.00                                          |     | 20s                 | 29s                      |            |               | Pass                     |
| 47.50           | 47.50                                          |     | 90min               | 90min                    |            |               | Pass                     |
| 48.50           | 48.50                                          |     | 90min               | 90min                    |            |               | Pass                     |
| 51.00           | 51.00                                          |     | 90min               | 90min                    |            | Pass          |                          |
| 51.50           | 51.50                                          |     | 90min               | 90min                    |            | Pass          |                          |
| 52.00           | 52.00                                          |     | 15min               | 15min                    |            |               | Pass                     |
|                 | 70000                                          |     |                     |                          | 53.0       |               |                          |
|                 | 60000                                          |     |                     |                          | 52.0       |               |                          |
|                 | 50000                                          |     |                     |                          | 51.0       |               |                          |
|                 | _                                              |     |                     |                          | 50.0       | Frequency[Hz] |                          |
|                 | /er[                                           |     |                     |                          |            | ency          |                          |
|                 | 30000                                          |     |                     |                          | 49.0       | redu          |                          |
|                 | 20000                                          |     |                     |                          | 48.0       | Œ             |                          |
|                 | 10000                                          |     |                     |                          | 47.0       |               |                          |
|                 | 0                                              |     |                     |                          | 46.0       |               |                          |
|                 | 0 50                                           | 000 | 10000 15<br>Time[s] | 000 20000                |            |               |                          |
|                 |                                                | P   | ower ——Frequ        | ency                     |            |               |                          |







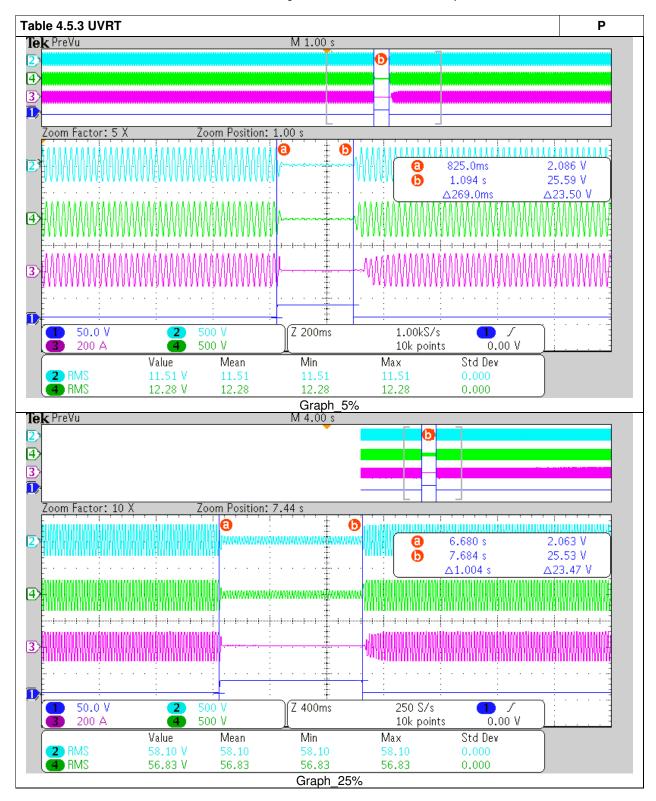

| <b>Table</b> 4.4.4 | Contin      | uous voltag     | e operation ran  | ge              |        |          |               | Р          |
|--------------------|-------------|-----------------|------------------|-----------------|--------|----------|---------------|------------|
| Test result        |             |                 |                  |                 |        |          |               |            |
| Step               | Volt        | tage (%)        | P (%)            | P meas          | s. (%) | Time (s) |               | T meas (s) |
| 1                  |             | 100             | 100              | 100.0           | )7%    | >60      |               | 70         |
| 2                  |             | 85              | 100 (*)          | 93.70           | 0%     | >120     |               | 130        |
| 3                  |             | 100             | 100              | 100.0           | )8%    | >5       |               | 30         |
| 4                  |             | 110             | 100              | 100.0           | )8%    | >120     |               | 130        |
| (*) Active po      | wer rec     | duction is allo | wed due to curre | ent limitation. |        |          | •             |            |
|                    |             | 120% ———        |                  |                 |        | 120      | %             |            |
|                    |             | 110%            |                  |                 |        | 110      | %             |            |
|                    | ű.          | 100%            |                  |                 |        | 100      | % <del></del> |            |
|                    | Power(p.u.) | 90%             |                  |                 |        | 90%      | voltage(p.u.) |            |
|                    | Po          | 80%             |                  |                 |        | 80%      | S Is          |            |
|                    |             | 70% ———         |                  |                 |        | 70%      |               |            |
|                    |             | 60% ———         |                  |                 |        | 60%      |               |            |
|                    |             | 0               | 90               | 180             | 270    | 360      |               |            |
|                    |             |                 |                  | Time[s]         |        |          |               |            |
|                    |             |                 |                  | Power ——Vo      | oltage |          |               |            |



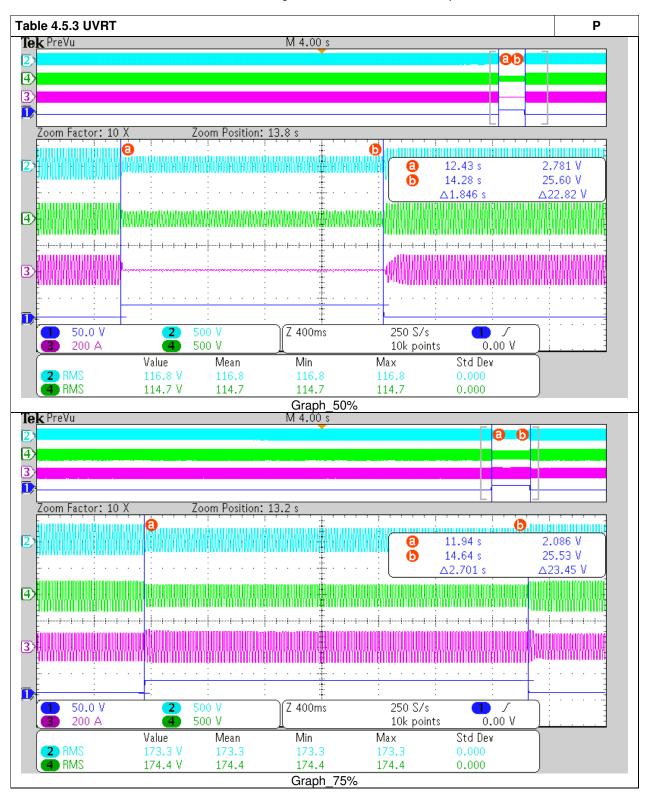
| Table 4.5.2 | Rate of change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of frequency (ROCOF | <del></del> ) |                   | Р             |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|-------------------|---------------|
| Test result |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |               |                   |               |
| Steps       | f (Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Δt (s) step change  | Step time     | f meas. (Hz)      | t meas. (s)   |
| 1           | 50.00 ± 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | >10 s         | 50.00             | 31.5          |
| 2           | 52.00 ± 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1s                 | >10 s         | 52.00             | 30.0          |
| 3           | 50.00 ± 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 s               | >10 s         | 50.00             | 29.5          |
| 4           | 48.00 ± 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 s               | >10 s         | 48.00             | 29.5          |
| 5           | 50.00 ± 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1 s               | >10 s         | 50.00             | 33.0          |
|             | 70000 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |               | 53.0              |               |
|             | 60000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |               | 52.0              |               |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |               |                   |               |
|             | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |               | 51.0 <u>-</u>     | 7             |
|             | ≥ 40000 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |               | 50.0              | <u>ال</u>     |
|             | ₹ 40000 — 30000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 40000 — 400000 — 400000 — 40000 — 40000 — 40000 — 400000 — 40000 — 40000 — |                     |               | 49.0              | n e           |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |               | 13.0              | rreduency[hz] |
|             | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |               | 48.0              | _             |
|             | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |               | 47.0              |               |
|             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |               | 46.0              |               |
|             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 60               | 90 120        |                   |               |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | Time[s]       |                   |               |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |               |                   |               |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Power               |               |                   |               |
|             | 70000 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |               | 52.5              |               |
|             | 60000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |               | 52.0              |               |
|             | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |               | 51.5              |               |
|             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |               | 51.0              | rreduency[HZ] |
|             | 40000 —<br>30000 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | /             | 50.5              | nen d         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |               | 50.5              | Led           |
|             | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |               | 50.0 <sup>1</sup> | _             |
|             | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |               | 49.5              |               |
|             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |               | 49.0              |               |
|             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30.5 31 31.5        | 32 32.5 3     | 3 33.5            |               |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | Time[s]       |                   |               |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dower               | Frequency     |                   |               |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Power               | Frequency     |                   |               |






#### **Test result**

| Test at | full | load | (>90%Pn) |  |
|---------|------|------|----------|--|
|---------|------|------|----------|--|


| Udip        |      | Туре        | t min (ms) | U meas. (%)         | T meas. (ms) | P recover (s) |
|-------------|------|-------------|------------|---------------------|--------------|---------------|
|             |      | Phase A     |            | 5.27/99.96/100.00   | 260          | 0.076         |
|             | 1 ph | Phase B     |            | 99.48/5.15/100.00   | 264          | 0.087         |
| <b>5</b> 0/ |      | Phase C     |            | 100.00/99.04/5.17   | 262          | 0.092         |
| 5%          |      | Phase A & B | 250        | 5.23/4.82/100.00    | 261          | 0.071         |
|             | 2 ph | Phase B & C |            | 100.00/5.18/4.82    | 262          | 0.070         |
|             |      | Phase C & A |            | 5.32/100.00/5.12    | 265          | 0.087         |
|             |      | 3 ph        |            | 5.00/5.34/5.00      | 269          | 0.084         |
|             |      | Phase A     |            | 100.57/25.13/100.00 | 1002         | 0.078         |
|             | 1 ph | Phase B     |            | 25.25/99.26/100.00  | 1001         | 0.072         |
| 050/        |      | Phase C     |            | 100.00/100.09/24.90 | 998          | 0.075         |
| 25%         |      | Phase A & B | 938        | 24.77/25.07/100.00  | 1010         | 0.089         |
|             | 2 ph | Phase B & C |            | 100.00/25.12/24.62  | 1013         | 0.085         |
|             |      | Phase C & A |            | 24.96/100.00/24.82  | 999          | 0.076         |
|             |      | 3 ph        |            | 25.26/24.71/5.00    | 1004         | 0.089         |
|             |      | Phase A     |            | 99.96/50.17/100.00  | 1851         | 0.086         |
|             | 1 ph | Phase B     |            | 50.52/98.96/100.00  | 1851         | 0.084         |
| F00/        |      | Phase C     |            | 100.00/99.13/49.52  | 1852         | 0.087         |
| 50%         |      | Phase A & B | 1797       | 50.39/49.87/100.00  | 1851         | 0.086         |
|             | 2 ph | Phase B & C |            | 100.00/50.35/49.74  | 1846         | 0.086         |
|             |      | Phase C & A |            | 50.22/100.00/49.52  | 1856         | 0.082         |
|             |      | 3 ph        |            | 50.78/49.87/50.00   | 1846         | 0.087         |
|             |      | Phase A     |            | 100.78/74.26/100.00 | 2706         | 0.063         |
|             | 1 ph | Phase B     |            | 75.78/99.39/100.00  | 2701         | 0.096         |
| 750/        |      | Phase C     |            | 100.00/101.13/75.79 | 2697         | 0.084         |
| 75%         |      | Phase A & B | 2656       | 75.30/76.00/100.00  | 2716         | 0.083         |
|             | 2 ph | Phase B & C |            | 100.00/76.17/75.61  | 2705         | 0.091         |
|             |      | Phase C & A |            | 74.61/100.00/75.87  | 2709         | 0.095         |
|             |      | 3 ph        |            | 75.35/75.83/75.00   | 2701         | 0.095         |

Remark: The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: undervoltage of 50%Un.











| ph ph ph       | Co%)  Type Phase A Phase B Phase C Phase A & B Phase B & C Phase C & A  The company of the compa | t min (ms) 250 938 | U meas. (%) 100.87/4.75/100.00 4.79/100.17/100.00 100.00/99.65/5.02 5.24/5.26/100.00 100.00/5.31/4.88 5.12/100.00/5.36 5.36/5.21/5.00 100.09/24.75/100.00 24.77/100.26/100.00 100.00/100.17/24.70 24.71/24.97/100.00 100.00/24.98/24.69 25.07/100.00/25.03 25.37/25.38/25.00 100.70/49.61/100.00 100.83/50.83/100.00                                 | T meas. (ms)  264  279  272  271  268  272  274  1004  1000  1005  1000  1003  1002  1005  1843  1852  1853           | P recover (s<br>0.070<br>0.091<br>0.081<br>0.079<br>0.082<br>0.081<br>0.096<br>0.073<br>0.077<br>0.072<br>0.077<br>0.072<br>0.075<br>0.074<br>0.093<br>0.083 |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ph ph ph       | Phase A Phase B Phase C Phase B & C Phase B & C Phase C & A  3 ph Phase A Phase B Phase B Phase C Phase C Phase C A 3 ph Phase B Phase C Phase C Phase C & A  3 ph Phase B Phase C Phase C & A  5 ph Phase C Phase C & A  6 ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 250<br>938         | 100.87/4.75/100.00<br>4.79/100.17/100.00<br>100.00/99.65/5.02<br>5.24/5.26/100.00<br>100.00/5.31/4.88<br>5.12/100.00/5.36<br>5.36/5.21/5.00<br>100.09/24.75/100.00<br>24.77/100.26/100.00<br>100.00/100.17/24.70<br>24.71/24.97/100.00<br>100.00/24.98/24.69<br>25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00 | 264<br>279<br>272<br>271<br>268<br>272<br>274<br>1004<br>1000<br>1005<br>1000<br>1003<br>1002<br>1005<br>1843<br>1852 | 0.070<br>0.091<br>0.081<br>0.079<br>0.082<br>0.081<br>0.096<br>0.073<br>0.077<br>0.072<br>0.077<br>0.072<br>0.075<br>0.074                                   |
| ph ph ph       | Phase A Phase B Phase C Phase A & B Phase B & C Phase C & A  3 ph Phase A Phase B Phase C Phase A & B Phase B Phase C Phase A & B Phase B & C Phase C & A  3 ph Phase B & C Phase C & A  5 ph Phase B Phase B Phase B Phase B Phase B Phase C Phase A & B Phase B Phase B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 250<br>938         | 100.87/4.75/100.00<br>4.79/100.17/100.00<br>100.00/99.65/5.02<br>5.24/5.26/100.00<br>100.00/5.31/4.88<br>5.12/100.00/5.36<br>5.36/5.21/5.00<br>100.09/24.75/100.00<br>24.77/100.26/100.00<br>100.00/100.17/24.70<br>24.71/24.97/100.00<br>100.00/24.98/24.69<br>25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00 | 264<br>279<br>272<br>271<br>268<br>272<br>274<br>1004<br>1000<br>1005<br>1000<br>1003<br>1002<br>1005<br>1843<br>1852 | 0.070<br>0.091<br>0.081<br>0.079<br>0.082<br>0.081<br>0.096<br>0.073<br>0.077<br>0.072<br>0.077<br>0.072<br>0.075<br>0.074                                   |
| ph ph ph       | Phase B Phase C Phase A & B Phase B & C Phase C & A  3 ph Phase B Phase B Phase C Phase A & B Phase B Phase C Phase A & B Phase B & C Phase C & A  3 ph Phase B & C Phase C & A  5 ph Phase B Phase B Phase B Phase B Phase C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 938                | 4.79/100.17/100.00<br>100.00/99.65/5.02<br>5.24/5.26/100.00<br>100.00/5.31/4.88<br>5.12/100.00/5.36<br>5.36/5.21/5.00<br>100.09/24.75/100.00<br>24.77/100.26/100.00<br>100.00/100.17/24.70<br>24.71/24.97/100.00<br>100.00/24.98/24.69<br>25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00                       | 279 272 271 268 272 274 1004 1000 1005 1000 1003 1002 1005 1843 1852                                                  | 0.091<br>0.081<br>0.079<br>0.082<br>0.081<br>0.096<br>0.073<br>0.077<br>0.072<br>0.077<br>0.072<br>0.075<br>0.074                                            |
| ph ph ph       | Phase C Phase A & B Phase B & C Phase C & A  3 ph Phase B Phase B Phase C Phase A & B Phase B & C Phase C & A  3 ph Phase B & C Phase B & C Phase C & A  5 ph Phase C & A  7 ph Phase B Phase B Phase B Phase B Phase C Phase A & B Phase B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 938                | 100.00/99.65/5.02<br>5.24/5.26/100.00<br>100.00/5.31/4.88<br>5.12/100.00/5.36<br>5.36/5.21/5.00<br>100.09/24.75/100.00<br>24.77/100.26/100.00<br>100.00/100.17/24.70<br>24.71/24.97/100.00<br>100.00/24.98/24.69<br>25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00                                             | 272<br>271<br>268<br>272<br>274<br>1004<br>1000<br>1005<br>1000<br>1003<br>1002<br>1005<br>1843<br>1852               | 0.081<br>0.079<br>0.082<br>0.081<br>0.096<br>0.073<br>0.077<br>0.072<br>0.077<br>0.072<br>0.075<br>0.074                                                     |
| ph<br>ph       | Phase A & B Phase B & C Phase C & A phase C & A phase B Phase B Phase C Phase A & B Phase B & C Phase C & A phase B & C Phase C & A phase B Phase B Phase B Phase B Phase B Phase C Phase A & B Phase B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 938                | 5.24/5.26/100.00<br>100.00/5.31/4.88<br>5.12/100.00/5.36<br>5.36/5.21/5.00<br>100.09/24.75/100.00<br>24.77/100.26/100.00<br>100.00/100.17/24.70<br>24.71/24.97/100.00<br>100.00/24.98/24.69<br>25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00                                                                  | 271<br>268<br>272<br>274<br>1004<br>1000<br>1005<br>1000<br>1003<br>1002<br>1005<br>1843<br>1852                      | 0.079<br>0.082<br>0.081<br>0.096<br>0.073<br>0.077<br>0.072<br>0.077<br>0.072<br>0.075<br>0.074                                                              |
| ph<br>ph       | Phase B & C Phase C & A  phase A Phase B Phase B Phase C Phase A & B Phase B & C Phase C & A  phase B & C Phase C & A  phase B & C Phase A Phase B Phase B Phase B Phase C Phase A & B Phase B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 938                | 100.00/5.31/4.88<br>5.12/100.00/5.36<br>5.36/5.21/5.00<br>100.09/24.75/100.00<br>24.77/100.26/100.00<br>100.00/100.17/24.70<br>24.71/24.97/100.00<br>100.00/24.98/24.69<br>25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00                                                                                      | 268<br>272<br>274<br>1004<br>1000<br>1005<br>1000<br>1003<br>1002<br>1005<br>1843<br>1852                             | 0.082<br>0.081<br>0.096<br>0.073<br>0.077<br>0.072<br>0.077<br>0.072<br>0.075<br>0.074                                                                       |
| ph<br>ph       | Phase C & A  3 ph Phase A Phase B Phase C Phase A & B Phase B & C Phase C & A  3 ph Phase A Phase B Phase B Phase B Phase B Phase B Phase C Phase A & B Phase B Phase C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 5.12/100.00/5.36<br>5.36/5.21/5.00<br>100.09/24.75/100.00<br>24.77/100.26/100.00<br>100.00/100.17/24.70<br>24.71/24.97/100.00<br>100.00/24.98/24.69<br>25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00                                                                                                          | 272<br>274<br>1004<br>1000<br>1005<br>1000<br>1003<br>1002<br>1005<br>1843<br>1852                                    | 0.081<br>0.096<br>0.073<br>0.077<br>0.072<br>0.077<br>0.072<br>0.075<br>0.074<br>0.093                                                                       |
| ph<br>ph       | Phase C & A  3 ph Phase A Phase B Phase C Phase A & B Phase B & C Phase C & A  3 ph Phase A Phase B Phase B Phase B Phase B Phase B Phase C Phase A & B Phase B Phase C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 5.12/100.00/5.36<br>5.36/5.21/5.00<br>100.09/24.75/100.00<br>24.77/100.26/100.00<br>100.00/100.17/24.70<br>24.71/24.97/100.00<br>100.00/24.98/24.69<br>25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00                                                                                                          | 274<br>1004<br>1000<br>1005<br>1000<br>1003<br>1002<br>1005<br>1843<br>1852                                           | 0.096<br>0.073<br>0.077<br>0.072<br>0.077<br>0.072<br>0.075<br>0.074<br>0.093                                                                                |
| ph<br>ph<br>ph | Phase A Phase B Phase C Phase A & B Phase B & C Phase C & A  3 ph Phase A Phase B Phase C Phase B Phase C Phase A & B Phase C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | 100.09/24.75/100.00<br>24.77/100.26/100.00<br>100.00/100.17/24.70<br>24.71/24.97/100.00<br>100.00/24.98/24.69<br>25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00                                                                                                                                                | 1004<br>1000<br>1005<br>1000<br>1003<br>1002<br>1005<br>1843<br>1852                                                  | 0.073<br>0.077<br>0.072<br>0.077<br>0.072<br>0.075<br>0.074<br>0.093                                                                                         |
| ph<br>ph<br>ph | Phase A Phase B Phase C Phase A & B Phase B & C Phase C & A  3 ph Phase A Phase B Phase C Phase B Phase C Phase A & B Phase C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | 24.77/100.26/100.00<br>100.00/100.17/24.70<br>24.71/24.97/100.00<br>100.00/24.98/24.69<br>25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00                                                                                                                                                                       | 1000<br>1005<br>1000<br>1003<br>1002<br>1005<br>1843<br>1852                                                          | 0.077<br>0.072<br>0.077<br>0.072<br>0.075<br>0.074<br>0.093                                                                                                  |
| ph             | Phase B Phase C Phase A & B Phase B & C Phase C & A phase A Phase B Phase B Phase C Phase A & B Phase B Phase B Phase B & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 24.77/100.26/100.00<br>100.00/100.17/24.70<br>24.71/24.97/100.00<br>100.00/24.98/24.69<br>25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00                                                                                                                                                                       | 1000<br>1005<br>1000<br>1003<br>1002<br>1005<br>1843<br>1852                                                          | 0.077<br>0.072<br>0.077<br>0.072<br>0.075<br>0.074<br>0.093                                                                                                  |
| ph             | Phase C Phase A & B Phase B & C Phase C & A  3 ph Phase A Phase B Phase C Phase B Phase C Phase A & B Phase B Phase B & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | 100.00/100.17/24.70<br>24.71/24.97/100.00<br>100.00/24.98/24.69<br>25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00                                                                                                                                                                                              | 1005<br>1000<br>1003<br>1002<br>1005<br>1843<br>1852                                                                  | 0.072<br>0.077<br>0.072<br>0.075<br>0.074<br>0.093                                                                                                           |
| ph             | Phase A & B Phase B & C Phase C & A  3 ph Phase A Phase B Phase C Phase A & B Phase B Phase B & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 24.71/24.97/100.00<br>100.00/24.98/24.69<br>25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00                                                                                                                                                                                                                     | 1000<br>1003<br>1002<br>1005<br>1843<br>1852                                                                          | 0.077<br>0.072<br>0.075<br>0.074<br>0.093                                                                                                                    |
| ph             | Phase B & C Phase C & A  3 ph Phase A Phase B Phase C Phase A & B Phase B & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | 100.00/24.98/24.69<br>25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00                                                                                                                                                                                                                                           | 1003<br>1002<br>1005<br>1843<br>1852                                                                                  | 0.072<br>0.075<br>0.074<br>0.093                                                                                                                             |
| ph             | Phase C & A  3 ph  Phase A  Phase B  Phase C  Phase A & B  Phase B & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1797               | 25.07/100.00/25.03<br>25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00                                                                                                                                                                                                                                                                 | 1002<br>1005<br>1843<br>1852                                                                                          | 0.075<br>0.074<br>0.093                                                                                                                                      |
| ph             | 3 ph Phase A Phase B Phase C Phase A & B Phase B & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1797               | 25.37/25.38/25.00<br>100.70/49.61/100.00<br>50.70/99.61/100.00                                                                                                                                                                                                                                                                                       | 1005<br>1843<br>1852                                                                                                  | 0.074<br>0.093                                                                                                                                               |
| ph             | Phase A Phase B Phase C Phase A & B Phase B & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1797               | 100.70/49.61/100.00<br>50.70/99.61/100.00                                                                                                                                                                                                                                                                                                            | 1843<br>1852                                                                                                          | 0.093                                                                                                                                                        |
|                | Phase B Phase C Phase A & B Phase B & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1797               | 50.70/99.61/100.00                                                                                                                                                                                                                                                                                                                                   | 1852                                                                                                                  |                                                                                                                                                              |
|                | Phase C<br>Phase A & B<br>Phase B & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1797               |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                       |                                                                                                                                                              |
| ph             | Phase A & B<br>Phase B & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1797               | 100.00,00.00,100.00                                                                                                                                                                                                                                                                                                                                  |                                                                                                                       | 0.087                                                                                                                                                        |
| ph             | Phase B & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,0,               | 49.48/50.09/100.00                                                                                                                                                                                                                                                                                                                                   | 1851                                                                                                                  | 0.083                                                                                                                                                        |
| Pii            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  | 100.00/49.91/49.96                                                                                                                                                                                                                                                                                                                                   | 1847                                                                                                                  | 0.084                                                                                                                                                        |
|                | Phase L. & A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | 50.78/100.00/49.13                                                                                                                                                                                                                                                                                                                                   | 1853                                                                                                                  | 0.083                                                                                                                                                        |
|                | 3 ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 50.78/50.09/50.00                                                                                                                                                                                                                                                                                                                                    | 1849                                                                                                                  | 0.084                                                                                                                                                        |
|                | Phase A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 99.22/75.83/100.00                                                                                                                                                                                                                                                                                                                                   | 2702                                                                                                                  | 0.094                                                                                                                                                        |
| 1 ph           | Phase B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2656               | 75.70/99.09/100.00                                                                                                                                                                                                                                                                                                                                   | 2695                                                                                                                  | 0.076                                                                                                                                                        |
|                | Phase C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 100.00/100.30/74.22                                                                                                                                                                                                                                                                                                                                  | 2704                                                                                                                  | 0.074                                                                                                                                                        |
|                | Phase A & B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 75.35/75.91/100.00                                                                                                                                                                                                                                                                                                                                   | 2706                                                                                                                  | 0.090                                                                                                                                                        |
| ph             | Phase B & C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 100.00/74.83/76.22                                                                                                                                                                                                                                                                                                                                   | 2704                                                                                                                  | 0.092                                                                                                                                                        |
| ρ              | Phase C & A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 75.04/100.00/76.00                                                                                                                                                                                                                                                                                                                                   | 2688                                                                                                                  | 0.088                                                                                                                                                        |
|                | 3 ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 75.96/76.35/75.00                                                                                                                                                                                                                                                                                                                                    | 2702                                                                                                                  | 0.075                                                                                                                                                        |
|                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | th clause 4.7      | 4.2.2 Zero current mode a                                                                                                                                                                                                                                                                                                                            |                                                                                                                       |                                                                                                                                                              |
| of 509         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000             | 2010 00110111 111000 1                                                                                                                                                                                                                                                                                                                               | and onabing or dord                                                                                                   | iii ootiii ig.                                                                                                                                               |
| reVu           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | M 1.00 s                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       |                                                                                                                                                              |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 6                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                                                                                                              |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                       |                                                                                                                                                              |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                       |                                                                                                                                                              |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                     |                                                                                                                                                              |
| m Factor       | : 10 X Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oom Position: 2.   | 06 s                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       |                                                                                                                                                              |
| A A A          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>(a)</b>         | ‡ 🧿 ηημηρή                                                                                                                                                                                                                                                                                                                                           | <u>, , , , , , , , , , , , , , , , , , , </u>                                                                         | ΛΛΔ                                                                                                                                                          |
| WW             | AAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V                  | <b>→ → → → → → → → → →</b>                                                                                                                                                                                                                                                                                                                           | 1.849 s     2.078       2.123 s     25.55                                                                             | V                                                                                                                                                            |
| W              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                      | Δ274.0ms Δ23.4                                                                                                        | Z V                                                                                                                                                          |
| ΛΛΛΑ           | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V                  |                                                                                                                                                                                                                                                                                                                                                      | WWW.                                                                                                                  | <b>WW</b>                                                                                                                                                    |
|                | Tactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Factor: 10 X Z   | n Factor: 10 X Zoom Position: 2.                                                                                                                                                                                                                                                                                                                     |                                                                                                                       | 1.849 s 2.078                                                                                                                                                |

4 RMS

50.0 V 50.0 A 500 V 500 V

Value 12.32 V

11.98 V

Mean

11.98

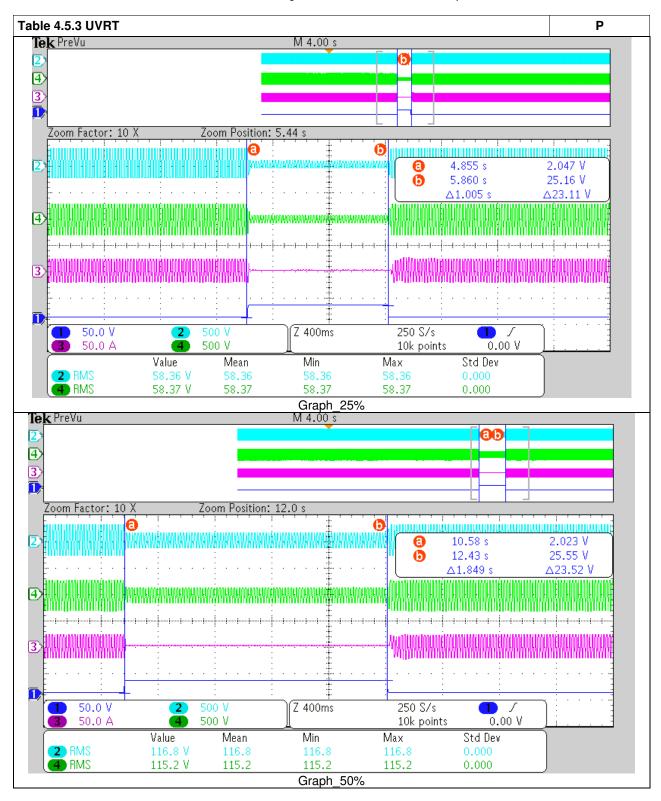
Z 100ms

Min 12.32

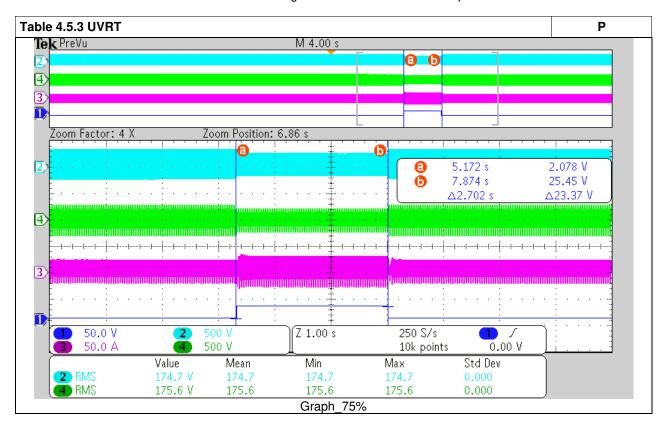
11.98 Graph\_5% 1.00kS/s 10k points

Max 12.32

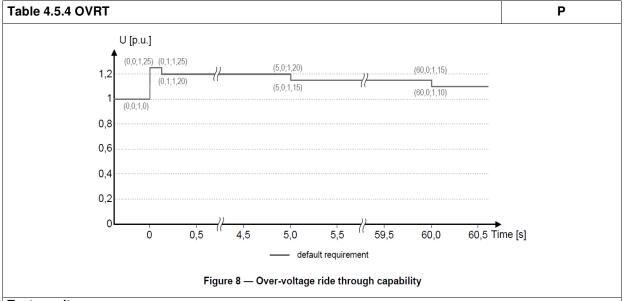
11.98


0.00 V

Std Dev

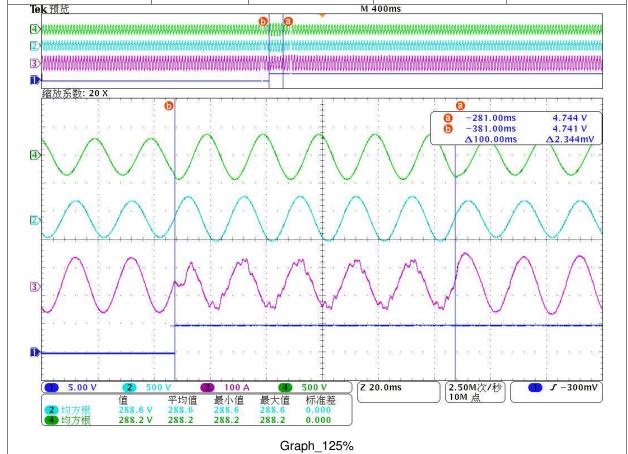

0.000

0.000

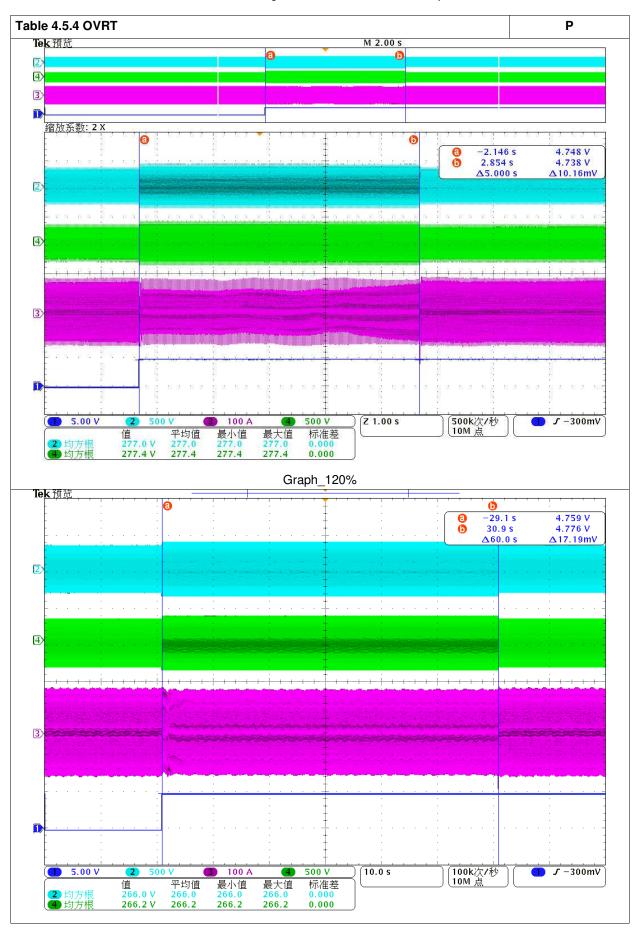








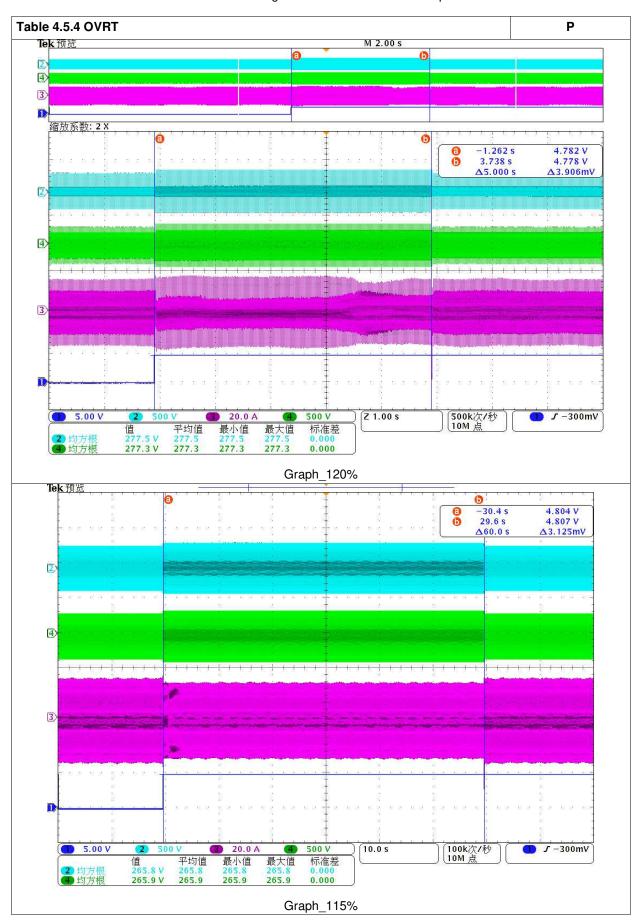




Test result

| Test at full load (>90%) |            |             |              |               |
|--------------------------|------------|-------------|--------------|---------------|
| Udip                     | t min (ms) | U meas. (%) | T meas. (ms) | P recover (s) |
| 125%                     | 100        | 125.39%     | 100          |               |
| 120%                     | 5000       | 120.52%     | 5000         |               |
| 115%                     | 60000      | 115.70%     | 60000        |               |










Page 41 of 87

| ole 4.5.4 OVRT                         |                                        |                                                                                |                                                                  | P                                                                                                               |
|----------------------------------------|----------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                        |                                        | Graph_115%                                                                     |                                                                  | 1                                                                                                               |
| st at full load (20%)                  |                                        |                                                                                |                                                                  |                                                                                                                 |
| Udip                                   | T min (ms)                             | U meas. (%)                                                                    | T meas. (ms)                                                     | P recover (s)                                                                                                   |
| 125%                                   | 100                                    | 125.48%                                                                        | 100                                                              |                                                                                                                 |
| 120%                                   | 5000                                   | 120.61%                                                                        | 5000                                                             |                                                                                                                 |
| 115%                                   | 60000                                  | 115.61%                                                                        | 60000                                                            |                                                                                                                 |
| Te <u>k 预览</u>                         | ı                                      | M                                                                              | 400ms                                                            | ,                                                                                                               |
| <b>(4)</b>                             | hinnininananahananahananahanahanahanah | λλολλολλολλολλολλολλολλολλολλολ λο <mark>φ</mark> ήφής <mark>ο</mark> πολολλολ | nnahananahananahanahanahanahanahanahana                          | hhinnin hinnin hinni |
| Z>MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM | MARAMAAAAAAAAAAAAAAAAAAAAAAAAA         | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                         |                                                                  | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                                                  |
|                                        | บบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบ  | ยงของเขาของของของของของของของของของของของของของข                               | ประชากับประชากับประชากับประชากับประชากับประชากับประชากับประชากับ | ยนาบบบบปนาบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบ                                                                        |
| D                                      |                                        |                                                                                |                                                                  |                                                                                                                 |
| 缩放系数: 20 X                             |                                        | <del></del>                                                                    | 6                                                                |                                                                                                                 |
|                                        | 9                                      | <u> </u>                                                                       | (a) 165.80r                                                      |                                                                                                                 |
|                                        |                                        |                                                                                | (5 65.800r<br>△100.00                                            |                                                                                                                 |
| <b>3</b>                               |                                        |                                                                                | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                          | / \ /                                                                                                           |
|                                        |                                        |                                                                                |                                                                  |                                                                                                                 |
|                                        | <b>X</b>                               | $\mathbf{M} = \mathbf{M}$                                                      | Y Y Y                                                            |                                                                                                                 |
| n n                                    | $\wedge$                               | $\wedge$                                                                       | $\Lambda$ $\Lambda$ $\Lambda$                                    |                                                                                                                 |
| 2) \ / / /                             |                                        | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                          | /a : \                                                           | / / / /                                                                                                         |
|                                        | i yli l                                |                                                                                |                                                                  | $\Delta = \Delta$                                                                                               |
| n n                                    | ^ .                                    | M M                                                                            | M M                                                              | $\wedge$                                                                                                        |
| - 1 / 1                                | / \   . /                              | //\/#\.                                                                        | N                                                                | \ f -\                                                                                                          |
| 3 / / /                                |                                        | J: "\ J                                                                        |                                                                  | 1 1 1                                                                                                           |
|                                        | 1 \ / 1 \ /                            | M TANT YAM                                                                     | 1 / M 1 / M                                                      | 1/:1/:                                                                                                          |
| VV                                     | V                                      | 74 + 74                                                                        | . VV . VV                                                        | V = V                                                                                                           |
|                                        |                                        |                                                                                |                                                                  |                                                                                                                 |
| D                                      |                                        |                                                                                |                                                                  |                                                                                                                 |
|                                        |                                        | <u> </u>                                                                       |                                                                  |                                                                                                                 |
|                                        | 300 V 3 20.0                           |                                                                                | 20.0ms<br>20.0ms<br>10M 点                                        | <b>J</b> −300mV                                                                                                 |
| 值<br>② 均方根 288.8                       | 平均值 最小值<br>/ 288.8 288.8               | 最大值 标准差<br>288.8 0.000                                                         |                                                                  |                                                                                                                 |
| 2 均方根 288.8<br>4 均方根 288.3             | / 288.3 288.3                          | 288.3 0.000                                                                    |                                                                  |                                                                                                                 |
|                                        |                                        | Graph_125%                                                                     |                                                                  |                                                                                                                 |

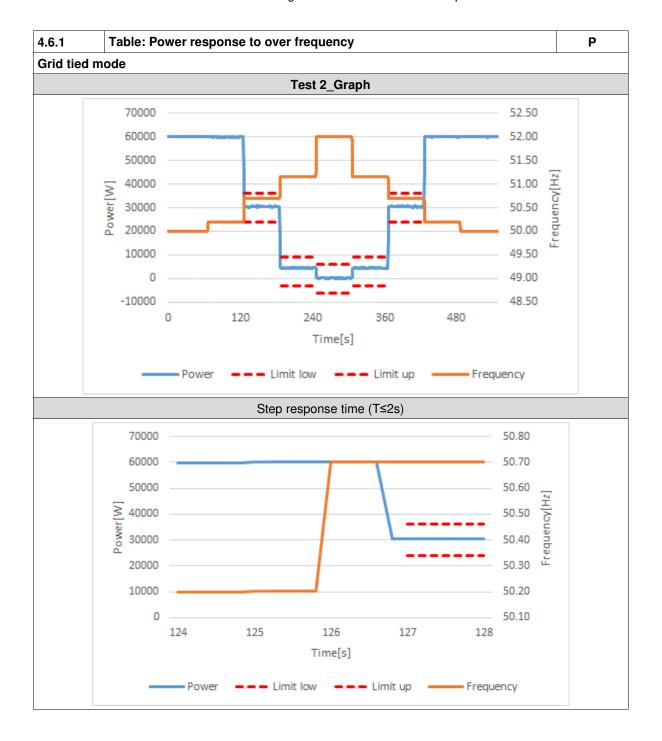




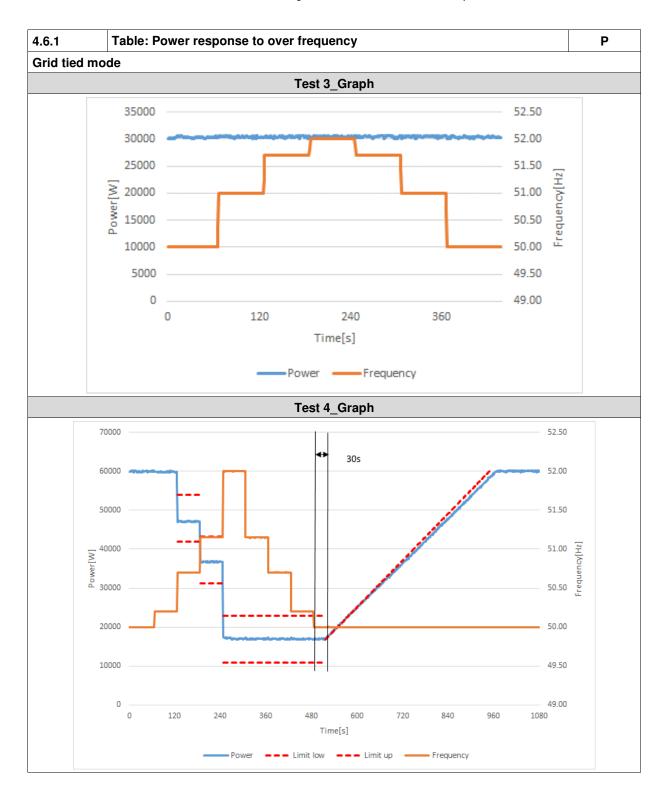


| 4.6.1 Table: F   | Power response to over frequency                            |                                 |                                                              |                                                                  |                        |                                                  |                                       |  |  |
|------------------|-------------------------------------------------------------|---------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|------------------------|--------------------------------------------------|---------------------------------------|--|--|
| Grid tied mode   |                                                             |                                 |                                                              |                                                                  |                        |                                                  |                                       |  |  |
|                  | 1                                                           | 100% Pn, f1 =                   | =50.2Hz; droop=                                              | :12%; f-stop                                                     | deactivated, v         | with delay of                                    | f2s                                   |  |  |
| Test 1           | f (Hz)                                                      | Measured<br>output<br>Power (W) | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |
| 50Hz ± 0.01Hz    | 50.00                                                       | 60035.32                        | 60000                                                        |                                                                  |                        |                                                  |                                       |  |  |
| 50.2Hz ± 0.01Hz  | 50.20                                                       | 59925.85                        | 60000                                                        |                                                                  |                        |                                                  |                                       |  |  |
| 50.70Hz ± 0.01Hz | 50.70                                                       | 55341.27                        | 55000                                                        | 341.27                                                           | ± 6000                 | 0.4s                                             | 0.8s                                  |  |  |
| 51.15Hz ± 0.01Hz | 51.15                                                       | 51175.90                        | 50500                                                        | 675.90                                                           | ± 6000                 | 0.4s                                             | 0.6s                                  |  |  |
| 52.0Hz ± 0.01Hz  | 52.00                                                       | 42800.48                        | 42000                                                        | 800.48                                                           | ± 6000                 | 0.4s                                             | 0.8s                                  |  |  |
| 51.15Hz ± 0.01Hz | 51.15                                                       | 51130.15                        | 50500                                                        | 630.15                                                           | ± 6000                 | 0.2s                                             | 0.4s                                  |  |  |
| 50.70Hz ± 0.01Hz | 50.70                                                       | 55241.98                        | 55000                                                        | 241.98                                                           | ± 6000                 | 0.2s                                             | 0.4s                                  |  |  |
| 50.2Hz ± 0.01Hz  | 50.20                                                       | 59958.92                        | 60000                                                        | -41.08                                                           | ± 6000                 | 0.4s                                             | 0.6s                                  |  |  |
| 50Hz ± 0.01Hz    | 50.00                                                       | 60017.04                        | 60000                                                        |                                                                  |                        |                                                  |                                       |  |  |
|                  | 100% Pn, f1 =50.2Hz; droop=2%; f-stop deactivated, no delay |                                 |                                                              |                                                                  |                        |                                                  |                                       |  |  |
| Test 2           | f (Hz)                                                      | Measured<br>output<br>Power (W) | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |
| 50Hz ± 0.01Hz    | 50.00                                                       | 60063.43                        |                                                              |                                                                  |                        |                                                  |                                       |  |  |
| 50.2Hz ± 0.01Hz  | 50.20                                                       | 59939.68                        |                                                              |                                                                  |                        |                                                  |                                       |  |  |
| 50.70Hz ± 0.01Hz | 50.70                                                       | 30692.77                        | 30000                                                        | 692.77                                                           | ± 6000                 | 0.4s                                             | 0.6s                                  |  |  |
| 51.15Hz ± 0.01Hz | 51.15                                                       | 4709.79                         | 3000                                                         | 1709.79                                                          | ± 6000                 | 0.4s                                             | 0.8s                                  |  |  |
| 52.0Hz ± 0.01Hz  | 52.00                                                       | 223.28                          | 0                                                            | 223.28                                                           | ± 6000                 | 0.4s                                             | 0.6s                                  |  |  |
| 51.15Hz ± 0.01Hz | 51.15                                                       | 4456.75                         | 3000                                                         | 1456.75                                                          | ± 6000                 | 0.6s                                             | 0.8s                                  |  |  |
| 50.70Hz ± 0.01Hz | 50.70                                                       | 30252.40                        | 30000                                                        | 252.40                                                           | ± 6000                 | 0.4s                                             | 0.4s                                  |  |  |
| 50.2Hz ± 0.01Hz  | 50.20                                                       | 59777.62                        |                                                              |                                                                  |                        | 0.4s                                             | 0.6s                                  |  |  |
| 50Hz ± 0.01Hz    | 50.00                                                       | 60029.74                        |                                                              |                                                                  |                        |                                                  |                                       |  |  |

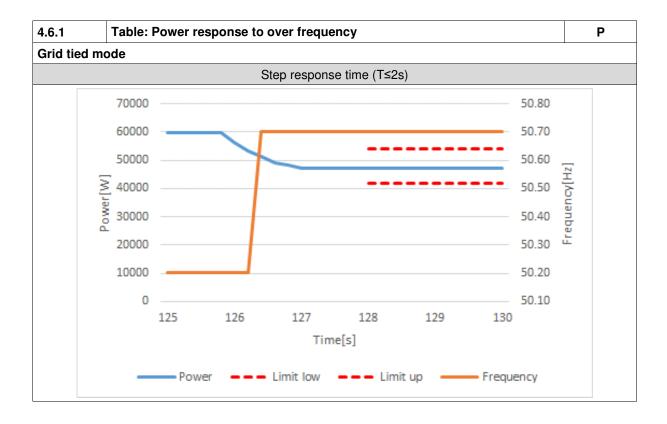



Page 44 of 87

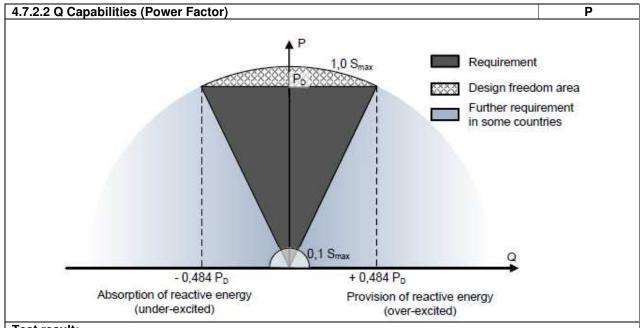
| 4.6.1 Table: F                                             | Power res                                                                          | sponse to ov                    | er frequency                                                 |                                                                  |                        |                                                  | Р                                     |  |  |
|------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|------------------------|--------------------------------------------------|---------------------------------------|--|--|
| Grid tied mode                                             |                                                                                    |                                 |                                                              |                                                                  |                        | •                                                |                                       |  |  |
| 50% Pn, f1 =52.0Hz; droop=5%; f-stop deactivated, no delay |                                                                                    |                                 |                                                              |                                                                  |                        |                                                  |                                       |  |  |
| Test 3                                                     | f (Hz)                                                                             | Measured<br>output<br>Power (W) | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |
| 50Hz ± 0.01Hz                                              | 50.00                                                                              | 30326.33                        |                                                              |                                                                  |                        |                                                  |                                       |  |  |
| 51.0Hz ± 0.01Hz                                            | 51.00                                                                              | 30420.18                        | 30000.00                                                     | 420.18                                                           | ± 6000                 |                                                  |                                       |  |  |
| 51.70Hz ± 0.01Hz                                           | 51.70                                                                              | 30451.13                        | 30000.00                                                     | 451.13                                                           | ± 6000                 |                                                  |                                       |  |  |
| 52.0Hz ± 0.01Hz                                            | 52.00                                                                              | 30451.52                        | 30000.00                                                     | 451.52                                                           | ± 6000                 |                                                  |                                       |  |  |
| 51.70Hz ± 0.01Hz                                           | 51.70                                                                              | 30476.67                        | 30000.00                                                     | 476.67                                                           | ± 6000                 |                                                  |                                       |  |  |
| 51.00Hz ± 0.01Hz                                           | 51.00                                                                              | 30485.38                        | 30000.00                                                     | 485.38                                                           | ± 6000                 |                                                  |                                       |  |  |
| 50Hz ± 0.01Hz                                              | 50.00                                                                              | 30365.14                        |                                                              |                                                                  |                        |                                                  |                                       |  |  |
|                                                            | 100% Pn, f1 =50.2Hz; droop=5%; f-stop =50.1, no delay, Deactivation time tstop 30s |                                 |                                                              |                                                                  |                        |                                                  |                                       |  |  |
| Test 4                                                     | f (Hz)                                                                             | Measured<br>output<br>Power (W) | Calculated<br>from standard<br>characteristic<br>curve P (W) | Tolerance<br>between<br>measured<br>P and<br>calculated<br>P (W) | Tolerance<br>Limit (W) | For a reduction of active power of 50% Pmax T≤2s | For a reduction of active power T≤20s |  |  |
| 50Hz ± 0.01Hz                                              | 50.00                                                                              | 59969.24                        | 60000                                                        |                                                                  |                        |                                                  |                                       |  |  |
| 50.2Hz ± 0.01Hz                                            | 50.20                                                                              | 59800.58                        | 60000                                                        |                                                                  |                        |                                                  |                                       |  |  |
| 50.70Hz ± 0.01Hz                                           | 50.70                                                                              | 47055.03                        | 48000                                                        | -944.97                                                          | ± 6000                 | 0.4s                                             | 0.6s                                  |  |  |
| 51.15Hz ± 0.01Hz                                           | 51.15                                                                              | 36650.15                        | 37200                                                        | -549.85                                                          | ± 6000                 | 0.2s                                             | 0.4s                                  |  |  |
| 52.0Hz ± 0.01Hz                                            | 52.00                                                                              | 17070.00                        | 16800                                                        | 270.00                                                           | ± 6000                 | 0.4s                                             | 0.6s                                  |  |  |
| 51.15Hz ± 0.01Hz                                           | 51.15                                                                              | 16962.45                        | 16800                                                        | 162.45                                                           | ± 6000                 |                                                  |                                       |  |  |
| 50.70Hz ± 0.01Hz                                           | 50.70                                                                              | 16958.87                        | 16800                                                        | 158.87                                                           | ± 6000                 |                                                  |                                       |  |  |
| 50.2Hz ± 0.01Hz                                            | 50.20                                                                              | 16949.80                        | 16800                                                        |                                                                  |                        |                                                  |                                       |  |  |
| 50Hz ± 0.01Hz                                              | 50.00                                                                              | 60057.88                        | 60000                                                        |                                                                  |                        |                                                  |                                       |  |  |











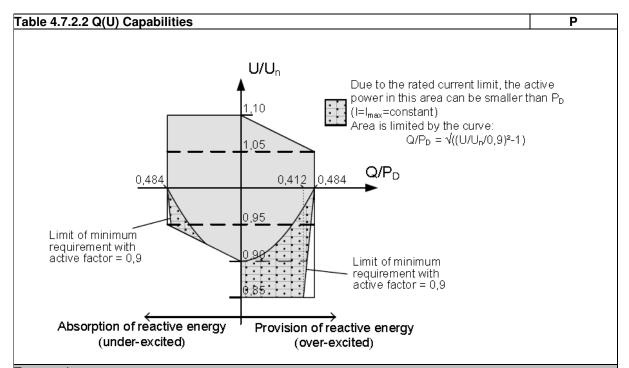







| rest result: |      |
|--------------|------|
| Leading PF=0 | ).9: |

| P/P <sub>n</sub> [%] setpoint | P[W]     | Q[Var]   | Cos φ  | Cos<br>φ<br>Set<br>point | Δcos φ  | Q[Var]<br>setpoint | ΔQ/S <sub>max</sub> [%] | LIMITE<br>[%] |
|-------------------------------|----------|----------|--------|--------------------------|---------|--------------------|-------------------------|---------------|
| 10                            | 6178.82  | 3498.70  | 0.8697 | 0.9                      | -0.0434 | 2905.93            | 0.10                    | ± 2           |
| 20                            | 12263.42 | 5967.68  | 0.8992 | 0.9                      | 0.0000  | 5811.87            | 0.05                    | ± 2           |
| 30                            | 18329.55 | 8918.56  | 0.8992 | 0.9                      | -0.0005 | 8717.80            | 0.10                    | ± 2           |
| 40                            | 24370.35 | 11832.58 | 0.8996 | 0.9                      | -0.0014 | 11623.73           | 0.14                    | ± 2           |
| 50                            | 30381.24 | 14775.86 | 0.8993 | 0.9                      | -0.0002 | 14529.66           | 0.21                    | ± 2           |
| 60                            | 36356.64 | 17648.90 | 0.8996 | 0.9                      | -0.0004 | 17435.60           | 0.21                    | ± 2           |
| 70                            | 42326.99 | 20531.96 | 0.8997 | 0.9                      | -0.0004 | 20341.53           | 0.22                    | ± 2           |
| 80                            | 48298.74 | 23437.19 | 0.8997 | 0.9                      | -0.0006 | 23247.46           | 0.25                    | ± 2           |
| 90                            | 54258.43 | 26356.55 | 0.8995 | 0.9                      | -0.0008 | 26153.39           | 0.30                    | ± 2           |
| *100                          | 54429.89 | 26306.34 | 0.9004 | 0.9                      | 0.0015  |                    |                         |               |




| 4.7.2.2 Q                     | Capabilitie | s (Power F | actor)      |                   |          |                    |                        | Р             |
|-------------------------------|-------------|------------|-------------|-------------------|----------|--------------------|------------------------|---------------|
| Lagging P                     |             |            |             |                   |          |                    |                        |               |
| P/Pn [%] setpoint             | P[W]        | Q[Var]     | Cosφ        | Cosφ<br>Set point | Δcosφ    | Q[Var]<br>setpoint | $\Delta Q/S_{max}$ [%] | LIMITE<br>[%] |
| 10                            | 6249.76     | -3143.37   | 0.8931      | 0.9               | -0.0437  | -2905.93           | -0.04                  | ± 2           |
| 20                            | 12391.62    | -6035.21   | 0.8990      | 0.9               | -0.0011  | -5811.87           | -0.07                  | ± 2           |
| 30                            | 18585.03    | -9031.70   | 0.8994      | 0.9               | 0.0029   | -8717.80           | -0.16                  | ± 2           |
| 40                            | 24761.87    | -12009.62  | 0.8998      | 0.9               | 0.0017   | -11623.73          | -0.26                  | ± 2           |
| 50                            | 30894.44    | -14941.95  | 0.9002      | 0.9               | 0.0020   | -14529.66          | -0.34                  | ± 2           |
| 60                            | 37049.66    | -17957.15  | 0.8999      | 0.9               | 0.0017   | -17435.60          | -0.52                  | ± 2           |
| 70                            | 42230.55    | -20395.59  | 0.9005      | 0.9               | 0.0013   | -20341.53          | -0.06                  | ± 2           |
| 80                            | 48227.72    | -23351.84  | 0.9001      | 0.9               | 0.0012   | -23247.46          | -0.14                  | ± 2           |
| 90                            | 54220.76    | -26205.25  | 0.9004      | 0.9               | 0.0010   | -26153.39          | -0.08                  | ± 2           |
| 100                           | 54407.73    | -26227.27  | 0.9008      | 0.9               | 0.0013   |                    |                        |               |
| Q=0:                          |             |            |             |                   |          |                    |                        |               |
| P/P <sub>n</sub> [%] setpoint | P[W]        | Q[Var]     | Cosφ        | Cosφ<br>Set point | Δcosφ    | Q[Var]<br>setpoint | $\Delta Q/S_{max}$ [%] | LIMITE<br>[%] |
| 10                            | 6353.05     | 391.82     | 0.9980      | 1.0               | -0.0061  | 0.00               | 0.07                   | ± 2           |
| 20                            | 12668.69    | 1109.56    | 0.9962      | 1.0               | -0.0011  | 0.00               | 0.37                   | ± 2           |
| 30                            | 19011.69    | 1260.33    | 0.9978      | 1.0               | -0.0005  | 0.00               | 0.63                   | ± 2           |
| 40                            | 24085.73    | 1367.08    | 0.9984      | 1.0               | -0.0004  | 0.00               | 0.91                   | ± 2           |
| 50                            | 30133.86    | 1533.97    | 0.9987      | 1.0               | -0.0003  | 0.00               | 1.28                   | ± 2           |
| 60                            | 36145.32    | 1739.59    | 0.9988      | 1.0               | -0.0002  | 0.00               | 1.74                   | ± 2           |
| 70                            | 42375.97    | 1513.50    | 0.9994      | 1.0               | -0.0001  | 0.00               | 1.77                   | ± 2           |
| 80                            | 48264.05    | 708.43     | 0.9999      | 1.0               | -0.0001  | 0.00               | 0.94                   | ± 2           |
| 90                            | 54479.76    | 738.15     | 0.9999      | 1.0               | -0.0001  | 0.00               | 1.11                   | ± 2           |
| 100                           | 60293.54    | 904.02     | 0.9999      | 1.0               | -0.0001  | 0.00               | 1.51                   | ± 2           |
|                               |             |            |             | Graph             |          |                    |                        |               |
|                               | 120         | 0.00%      |             |                   |          |                    |                        |               |
|                               | 120         |            |             |                   |          |                    |                        |               |
|                               | 100         | .00%       |             | •                 |          |                    |                        |               |
|                               | 80          | .00%       |             |                   |          |                    |                        |               |
|                               | _           |            |             |                   |          | •                  |                        |               |
|                               | %] ud/d     | .00%       |             |                   |          |                    |                        |               |
|                               |             | .00%       |             |                   |          |                    |                        |               |
|                               | 40          | /0         |             |                   | •        |                    |                        |               |
|                               | 20          | .00%       |             |                   |          |                    |                        |               |
|                               |             | 000/       |             | •                 | •        |                    |                        |               |
|                               | 0           | -60.00%    | -40.00% -20 | 0.00%             | % 20.00% | 40.00%             | 60.00%                 |               |
|                               |             |            |             | Q/Smax            | [%]      |                    |                        |               |
|                               |             |            |             |                   |          |                    |                        |               |



|                               | pabilities (Powe | er Factor)         |               |                    |                        | P          |
|-------------------------------|------------------|--------------------|---------------|--------------------|------------------------|------------|
| <b>Q=43.58%Pn</b><br>P/Pn [%] |                  | 1                  |               | Q[Var]             | $\Delta Q/S_{max}$     | T==        |
| setpoint                      | P[W]             | Q[Var]             | Cosφ          | setpoint           | [%]                    | LIMITE [%] |
| 10                            | 5689.93          | 25798.22           | 0.22          | 26148.00           | -0.58                  | ± 2        |
| 20                            | 11778.10         | 25718.93           | 0.42          | 26148.00           | -0.72                  | ± 2        |
| 30                            | 17857.51         | 25819.79           | 0.57          | 26148.00           | -0.55                  | ± 2        |
| 40                            | 23911.83         | 25711.11           | 0.68          | 26148.00           | -0.73                  | ± 2        |
| 50                            | 29952.58         | 25824.22           | 0.76          | 26148.00           | -0.54                  | ± 2        |
| 60                            | 35972.69         | 25726.75           | 0.81          | 26148.00           | -0.70                  | ± 2        |
| 70                            | 42003.19         | 25849.13           | 0.85          | 26148.00           | -0.50                  | ± 2        |
| 80                            | 47996.61         | 25951.36           | 0.88          | 26148.00           | -0.33                  | ± 2        |
| 90                            | 54090.77         | 25913.66           | 0.90          | 26148.00           | -0.39                  | ± 2        |
| 100                           | 53446.79         | 26045.88           | 0.90          | 26148.00           | -0.17                  | ± 2        |
| Q=-43.58%P                    | n                |                    |               |                    |                        |            |
| P/Pn [%]<br>setpoint          | P[W]             | Q[Var]             | Cosφ          | Q[Var]<br>setpoint | $\Delta Q/S_{max}$ [%] | LIMITE [%] |
| 10                            | 6634.49          | -26207.66          | 0.25          | -26148.00          | -0.10                  | ± 2        |
| 20                            | 12726.72         | -26083.34          | 0.44          | -26148.00          | 0.11                   | ± 2        |
| 30                            | 18793.79         | -25936.72          | 0.59          | -26148.00          | 0.35                   | ± 2        |
| 40                            | 24864.78         | -25818.44          | 0.69          | -26148.00          | 0.55                   | ± 2        |
| 50                            | 31065.74         | -25820.57          | 0.77          | -26148.00          | 0.55                   | ± 2        |
| 60                            | 37116.20         | -25670.94          | 0.82          | -26148.00          | 0.80                   | ± 2        |
| 70                            | 42960.65         | -26030.07          | 0.86          | -26148.00          | 0.20                   | ± 2        |
| 80                            | 48948.86         | -25911.83          | 0.88          | -26148.00          | 0.39                   | ± 2        |
| 90                            | 54887.58         | -26151.11          | 0.90          | -26148.00          | -0.01                  | ± 2        |
| 100*                          | 53536.14         | -26033.75          | 0.90          | -26148.00          | 0.19                   | ± 2        |
| *Remark: Due                  | e to the max cur | rent limit, the ac | tive power ca | ın't get to 100%   |                        |            |
|                               |                  |                    | Graph         |                    |                        |            |
|                               | 120.00%          |                    |               |                    |                        |            |
|                               |                  |                    |               |                    |                        |            |
|                               | 100.00%          |                    |               |                    |                        |            |
|                               | 80.00%           |                    |               |                    |                        |            |
|                               | %                | •                  |               |                    | •                      |            |
|                               | % 60.00% -       | 1                  |               |                    | 1                      |            |
|                               | 40.00%           | I .                |               |                    | I                      |            |
|                               |                  | +                  |               |                    | +                      |            |
|                               | 20.00%           | 1                  |               |                    | •                      |            |
|                               | 0.00%            | •                  |               |                    | •                      |            |
|                               |                  | 00% -40.00%        | -20.00% 0.    | .00% 20.00%        | 40.00% 60.009          |            |





| l est result |  |
|--------------|--|
|--------------|--|

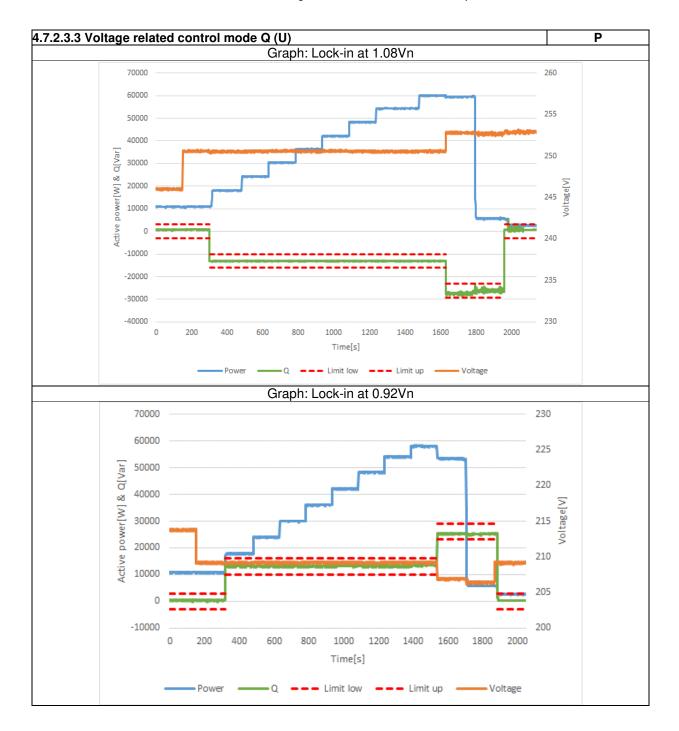
| $\sim$               |            |  |
|----------------------|------------|--|
|                      | r-excited: |  |
| $\sim$ $\sim$ $\sim$ | -cacilea.  |  |

|                           | AC o           | utput    | Reac             | tive power mea | sured               |            |
|---------------------------|----------------|----------|------------------|----------------|---------------------|------------|
| Voltage setting<br>[V/Vn] |                | Measured |                  | Reactive       | Value               |            |
|                           | Voltage<br>[V] | [V/Vn]   | Active power [W] | power<br>[Var] | [Q/P <sub>D</sub> ] | Limits     |
| 1.10                      | 252.79         | 1.10     | 60858.60         | 790.48         | 0.0130              | ±0.02      |
| 1.08                      | 248.33         | 1.08     | 60865.41         | 11506.02       | 0.1890              | 0.194±0.02 |
| 1.05                      | 241.53         | 1.05     | 59231.70         | 28726.06       | 0.4850              | 0.484±0.02 |
| 1.00                      | 230.10         | 1.00     | 59163.80         | 28656.55       | 0.4844              | 0.484±0.02 |
| 0.95                      | 218.40         | 0.95     | 56528.01         | 27300.99       | 0.4830              |            |
| 0.92                      | 211.38         | 0.92     | 54320.92         | 26315.06       | 0.4844              |            |
| 0.90                      | 207.01         | 0.90     | 53297.69         | 25803.14       | 0.4841              |            |
| 0.85                      | 195.49         | 0.85     | 50512.87         | 24424.90       | 0.4835              |            |

## Under-excited:

| Officer-excited.          |                |          |                        |                |                              |             |  |  |  |
|---------------------------|----------------|----------|------------------------|----------------|------------------------------|-------------|--|--|--|
|                           | AC o           | utput    | Reac                   | tive power mea | sured                        |             |  |  |  |
| Voltage setting           |                | Measured |                        | Reactive       | Value                        |             |  |  |  |
| Voltage setting<br>[V/Vn] | Voltage<br>[V] | [V/Vn]   | Active power [W] [Var] |                | Value<br>[Q/P <sub>D</sub> ] | Limits      |  |  |  |
| 1.10                      | 252.49         | 1.10     | 59486.55               | -28815.69      | -0.4844                      | -0.484±0.02 |  |  |  |
| 1.08                      | 247.89         | 1.08     | 59487.94               | -28793.05      | -0.4840                      | -0.484±0.02 |  |  |  |
| 1.05                      | 240.89         | 1.05     | 59065.14               | -28637.26      | -0.4848                      | -0.484±0.02 |  |  |  |
| 1.00                      | 229.91         | 1.00     | 59260.63               | -28408.52      | -0.4794                      | -0.484±0.02 |  |  |  |
| 0.95                      | 217.99         | 0.95     | 55736.73               | -26429.59      | -0.4742                      |             |  |  |  |
| 0.92                      | 211.24         | 0.92     | 59266.46               | -11437.08      | -0.1930                      | -0.194±0.02 |  |  |  |
| 0.90                      | 206.63         | 0.90     | 59240.87               | -819.21        | -0.0138                      | ±0.02       |  |  |  |



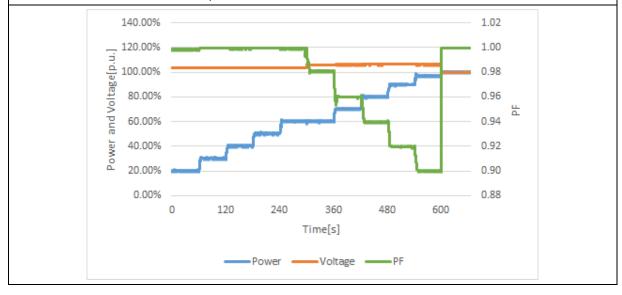

| 4.7.2.3.3 Voltage                 | related contro       | I mode Q (U)                     |                    |                     |                             | Р                               |
|-----------------------------------|----------------------|----------------------------------|--------------------|---------------------|-----------------------------|---------------------------------|
| P/P <sub>n</sub> [%]<br>Set-point | Vac [V]<br>Set-point | P/P <sub>n</sub> [%]<br>measured | Vac[V]<br>Measured | Q [VAr]<br>measured | Q [Var]<br>expected         | Δ Q<br>[Var]<br>(≤ ± 5 %<br>Pn) |
| < 20 %                            | 1.07 V <sub>n</sub>  | 18.11                            | 246.03             | 777.96              | ≈0 (< ± 5 % Pn)             | 1.30                            |
| < 20 %                            | 1.09 V <sub>n</sub>  | 18.13                            | 250.59             | 861.36              | ≈0 (< ± 5 % Pn)             | 1.44                            |
| <20 % → 30 %                      | 1.09 Vn              | 30.15                            | 250.54             | -13075.21           | -13074.00<br>(within 10sec) | 0.00                            |
| 40 %                              | 1.09 Vn              | 40.44                            | 250.58             | -13123.17           | -13074.00                   | -0.08                           |
| 50 %                              | 1.09 Vn              | 50.68                            | 250.61             | -13095.04           | -13074.00                   | -0.04                           |
| 60 %                              | 1.09 Vn              | 60.63                            | 250.57             | -13145.26           | -13074.00                   | -0.12                           |
| 70 %                              | 1.09 Vn              | 70.34                            | 250.61             | -13053.40           | -13074.00                   | 0.03                            |
| 80 %                              | 1.09 Vn              | 80.54                            | 250.57             | -13050.78           | -13074.00                   | 0.04                            |
| 90 %                              | 1.09 Vn              | 90.53                            | 250.54             | -13080.81           | -13074.00                   | -0.01                           |
| 100 %                             | 1.09 Vn              | 100.00                           | 250.58             | -13041.11           | -13074.00                   | 0.05                            |
| 100 %                             | 1.10 Vn              | 99.23                            | 252.80             | -27388.80           | -26148.00                   | -2.07                           |
| 100 % →10 %                       | 1.10 Vn              | 9.72                             | 252.69             | -26225.83           | -26148.00                   | -0.13                           |
| 10 % → ≤ 5 %                      | 1.10 Vn              | 4.52                             | 252.88             | 845.92              | ≈0 (< ± 5 % Pn)             | 1.41                            |

Remark:  $V1_s = 1.08 \text{ V}_n$ .  $V2_s = 1.1 \text{ V}_n$ .  $V1i = 0.92 \text{ V}_n$ .  $V2_i = 0.9 \text{ V}_n$ . lock-in value  $P=0.2P_n$ . lock-out value  $P=0.05P_n$ .

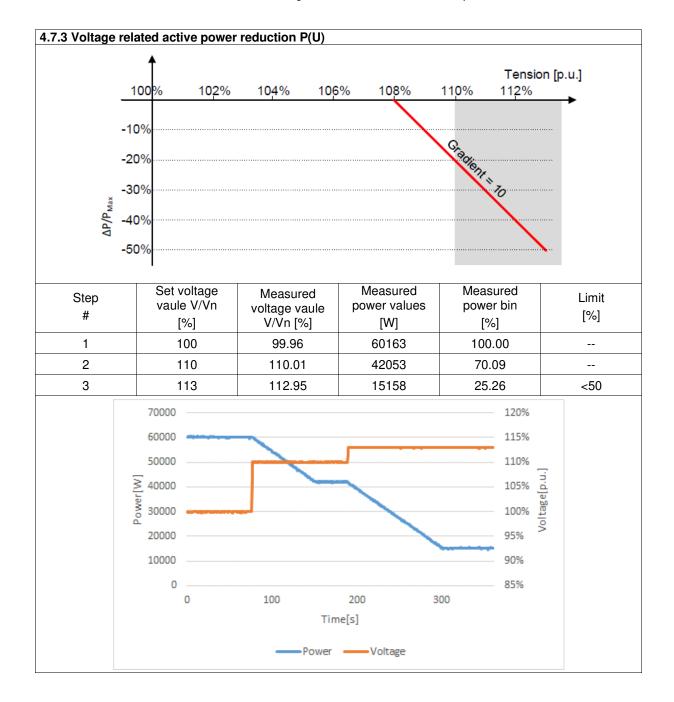
| P/P <sub>n</sub> [%]<br>Set-point | Vac [V]<br>Set-point | P/P <sub>n</sub> [%]<br>measured | Vac [V]<br>Measured | Q [VAr]<br>measured | Q [Var] expected           | Δ Q [Var]<br>(≤ ± 5 %P <sub>n</sub> ) |
|-----------------------------------|----------------------|----------------------------------|---------------------|---------------------|----------------------------|---------------------------------------|
| < 20 %                            | 0.93 Vn              | 18.11                            | 213.77              | 440.07              | ≈0 (< ± 5 % Pn)            | 0.73                                  |
| < 20 %                            | 0.91 Vn              | 18.10                            | 209.18              | 394.84              | ≈0 (< ± 5 % Pn)            | 0.66                                  |
| <20 % <b>→</b> 30 %               | 0.91 Vn              | 29.77                            | 209.14              | 13230.93            | 13074.00<br>(within 10sec) | 0.26                                  |
| 40 %                              | 0.91 Vn              | 39.86                            | 209.21              | 13212.92            | 13074.00                   | 0.23                                  |
| 50 %                              | 0.91 Vn              | 49.97                            | 209.16              | 13132.22            | 13074.00                   | 0.10                                  |
| 60 %                              | 0.91 Vn              | 60.20                            | 209.23              | 13123.89            | 13074.00                   | 0.08                                  |
| 70 %                              | 0.91 Vn              | 70.23                            | 209.19              | 13157.47            | 13074.00                   | 0.14                                  |
| 80 %                              | 0.91 Vn              | 80.67                            | 209.15              | 13187.11            | 13074.00                   | 0.19                                  |
| 90 %                              | 0.91 Vn              | 90.28                            | 209.20              | 13148.32            | 13074.00                   | 0.12                                  |
| 100 %                             | 0.91 Vn              | 96.84                            | 209.24              | 13435.32            | 13074.00                   | 0.60                                  |
| 100 %                             | 0.90 Vn              | 89.05                            | 206.94              | 25322.93            | 26148.80                   | -1.38                                 |
| 100 %<br>→10 %                    | 0.90 Vn              | 9.50                             | 206.65              | 25195.07            | 26148.80                   | -1.59                                 |
| 10 % → ≤<br>5 %                   | 0.91 Vn              | 4.31                             | 209.15              | 364.77              | ≈0 (< ± 5 % Pn)            | 0.61                                  |

Remark:  $V1_s = 1.08 \text{ V}_n$ .  $V2_s = 1.1 \text{ V}_n$ .  $V1i = 0.92 \text{ V}_n$ .  $V2_i = 0.9 \text{ V}_n$ . lock-in value  $P=0.2P_n$ . lock-out value  $P=0.05P_n$ 









| 4.7.2.3.4 Po       | ower related           | l control mo           | des                         |                              |                                       |                                        |                            |                               |
|--------------------|------------------------|------------------------|-----------------------------|------------------------------|---------------------------------------|----------------------------------------|----------------------------|-------------------------------|
| P Desired<br>(%Sn) | P<br>measured<br>(%Sn) | Q<br>measured<br>(Var) | Voltage<br>Desired<br>(%Un) | Voltage<br>Measured<br>(%Un) | Power<br>Factor<br>desired<br>(cos φ) | Power<br>Factor<br>measured<br>(cos φ) | △Q<br>(%S <sub>Max</sub> ) | Limit<br>(%S <sub>Max</sub> ) |
| 20%                | 20.25                  | 685.54                 | <105%                       | 103.49                       | 1.0000                                | 0.9984                                 | 1.04                       | ±2                            |
| 30%                | 30.28                  | 639.10                 | <105%                       | 103.54                       | 1.0000                                | 0.9994                                 | 0.97                       | ±2                            |
| 40%                | 40.33                  | 850.55                 | <105%                       | 103.60                       | 1.0000                                | 0.9994                                 | 1.29                       | ±2                            |
| 50%                | 50.36                  | 749.19                 | <105%                       | 103.66                       | 1.0000                                | 0.9997                                 | 1.14                       | ±2                            |
| 60%                | 60.34                  | 1090.72                | <105%                       | 103.78                       | 1.0000                                | 0.9995                                 | 1.65                       | ±2                            |
| 60%                | 60.32                  | 6972.61                | >105%                       | 106.09                       | 0.9800                                | 0.9817                                 | 0.51                       | ±2                            |
| 70%                | 70.21                  | 12330.02               | >105%                       | 106.17                       | 0.9600                                | 0.9597                                 | -0.12                      | ±2                            |
| 80%                | 80.16                  | 17451.23               | >105%                       | 106.25                       | 0.9400                                | 0.9400                                 | -0.04                      | ±2                            |
| 90%                | 89.98                  | 23053.69               | >105%                       | 106.34                       | 0.9200                                | 0.9197                                 | -0.08                      | ±2                            |
| 100%               | 97.10                  | 28199.36               | >105%                       | 106.25                       | 0.9000                                | 0.9001                                 | 1.30                       | ±2                            |
| 100%               | 100.06                 | 1154.50                | <100%                       | 99.83                        | 1.0000                                | 0.9997                                 | 1.75                       | ±2                            |

Remark: Tested at lock-in voltage 1.05 Vn and lock-out voltage Vn.

The Lock-in value is adjustable between Vn and 1.1Vn in 0.01V steps, the Lock-out value is adjustable between 0.9Vn and Vn in 0.01V steps









## Page 57 of 87

## 4.8 EMC

| TABLE: FI     | ick            |              |              |        |            |              |    |            |                 |    | Р            |
|---------------|----------------|--------------|--------------|--------|------------|--------------|----|------------|-----------------|----|--------------|
| Model: EL     | .M3PON0        | 30K          |              |        |            |              |    |            |                 |    |              |
| Valu          | ie             | Dc (%        | %)           | Dmax ( | %)         | d(t) - 500n  | ns |            | P <sub>st</sub> |    | Plt          |
| Lim           | it             | 3.30         | )            | 4.00   |            | 3.30%        |    |            | 1.00            |    | 0.65         |
|               | L1             | 0.03         | 1            | 0.337  |            | 0.0          |    |            | 0.118           |    | 0.113        |
| Test<br>value | L2             | 0.04         | 4            | 0.333  |            | 0.0          |    |            | 0.127           |    | 0.120        |
| value         | L3             | 0.25         | 8            | 0.525  |            | 0.0          |    |            | 0.298           |    | 0.155        |
|               | do             | [%]          | dn           | nax[%] | (          | d(t)[ms]     |    | Ps         | t               |    | Plt          |
| Limit         | 3.             | 30           | ·            | 4.00   |            | 500<br>3.30% |    | 1.0        | 0               |    | 0.65<br>N:12 |
| No. 1         | 0.023          | Pass         | 0.30         | 5 Pass | 0.0        |              | 0. | 118        | Pass            |    |              |
| 2             | 0.027          |              | 0.26         |        | 0.0        |              |    | 116        | Pass            |    |              |
| 3             | 0.029          |              | 0.29         |        | 0.0        |              |    | 115        | Pass            |    |              |
| 4             | 0.028          | Pass         | 0.29         |        | 0.0        |              |    | 113        | Pass            |    |              |
| 5             | 0.028          | Pass         | 0.23         |        | 0.0        |              |    | 112        | Pass            |    |              |
| 6             | 0.019          |              | 0.24         |        | 0.0        |              |    | 112        | Pass            |    |              |
| 7             | 0.028          | Pass         | 0.33         |        | 0.0        |              |    | 111        | Pass            |    |              |
| 8             | 0.025          | Pass         | 0.26         |        | 0.0        |              |    | 110        | Pass            |    |              |
| 9             | 0.023          | Pass         | 0.23         |        | 0.0        |              |    | 112        | Pass            |    |              |
| 10<br>11      | 0.031<br>0.022 | Pass         | 0.22         |        | 0.0        |              |    | 112        | Pass            |    |              |
| 12            | 0.022          | Pass<br>Pass | 0.28<br>0.30 |        | 0.0        |              |    | 113<br>110 | Pass<br>Pass    |    |              |
| Result        | 0.020          | Pass         | 0.50         | Pass   | 0.0        | Pass         | 0. | 110        | Pass            | 0  | 113 Pass     |
| rtocuit       |                | , 400        |              |        | L1 ph      |              |    |            | 1 000           | ٠. | 100          |
|               | do             | [%]          | dn           | nax[%] |            | d(t)[ms]     |    | Ps         | t               |    | Plt          |
| Limit         |                | 30           |              | 4.00   |            | 500          |    | 1.0        | 0               |    | 0.65         |
|               |                |              |              |        |            | 3.30%        |    |            |                 |    | N:12         |
| No. 1         | 0.007          | Pass         | 0.22         | 2 Pass | 0.0        | Pass         | 0. | 107        | Pass            |    |              |
| 2             | 0.019          | Pass         | 0.24         |        | 0.0        |              | 0. | 110        | Pass            |    |              |
| 3             | 0.017          | Pass         | 0.30         |        | 0.0        |              |    | 119        | Pass            |    |              |
| 4             | 0.025          | Pass         | 0.29         |        | 0.0        |              |    | 116        | Pass            |    |              |
| 5             | 0.033          |              | 0.27         |        | 0.0        |              |    | 119        | Pass            |    |              |
| 6             | 0.021          | Pass         | 0.33         |        | 0.0        |              |    | 122        | Pass            |    |              |
| 7             | 0.044          |              | 0.24         |        | 0.0        |              |    | 120        | Pass            |    |              |
| 8             | 0.026          |              | 0.32         |        | 0.0        |              |    | 127        | Pass            |    |              |
| 9<br>10       | 0.024<br>0.030 |              | 0.27<br>0.26 |        | 0.0<br>0.0 |              |    | 123<br>123 | Pass            |    |              |
| 11            | 0.030          | Pass<br>Pass | 0.29         |        | 0.0        |              |    | 125        | Pass<br>Pass    |    |              |
| 12            | 0.028          |              | 0.28         |        | 0.0        |              |    | 123        | Pass            |    |              |
| Result        | 0.050          | Pass         | 0.20         | Pass   | 0.0        | Pass         | 0. | 122        | Pass            | 0  | 120 Pass     |
| Result        |                | 1 433        |              | 1 433  |            | 1-433        |    |            | 1 433           | ٠. |              |
|               |                |              |              |        | L2 ph      | ase          |    |            |                 |    |              |

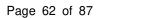


Page 58 of 87

|        | dc[º  | %]   | dmax  | [%]  | d(t)     | [ms] | Ps    | t    | Р     | lt   |
|--------|-------|------|-------|------|----------|------|-------|------|-------|------|
| Limit  | 3.3   | 0    | 4.0   | 0    | 5        | 00   | 1.0   | 0    | 0.6   | 35   |
|        |       |      |       |      | 3.3      | 0%   |       |      | N:1   | 12   |
| No. 1  | 0.258 | Pass | 0.334 | Pass | 0.0      | Pass | 0.159 | Pass |       |      |
| 2      | 0.140 | Pass | 0.312 | Pass | 0.0      | Pass | 0.127 | Pass |       |      |
| 3      | 0.027 | Pass | 0.525 | Pass | 0.0      | Pass | 0.130 | Pass |       |      |
| 4      | 0.090 | Pass | 0.376 | Pass | 0.0      | Pass | 0.298 | Pass |       |      |
| 5      | 0.058 | Pass | 0.324 | Pass | 0.0      | Pass | 0.119 | Pass |       |      |
| 6      | 0.026 | Pass | 0.197 | Pass | 0.0      | Pass | 0.109 | Pass |       |      |
| 7      | 0.035 | Pass | 0.217 | Pass | 0.0      | Pass | 0.111 | Pass |       |      |
| 8      | 0.016 | Pass | 0.214 | Pass | 0.0      | Pass | 0.107 | Pass |       |      |
| 9      | 0.016 | Pass | 0.211 | Pass | 0.0      | Pass | 0.103 | Pass |       |      |
| 10     | 0.011 | Pass | 0.201 | Pass | 0.0      | Pass | 0.102 | Pass |       |      |
| 11     | 0.024 | Pass | 0.244 | Pass | 0.0      | Pass | 0.103 | Pass |       |      |
| 12     | 0.069 | Pass | 0.222 | Pass | 0.0      | Pass | 0.103 | Pass |       |      |
| Result |       | Pass |       | Pass |          | Pass |       | Pass | 0.155 | Pass |
|        |       |      |       |      | L3 phase | 1    | •     |      |       |      |



| TABLE: FI     | ick    |       |      |        |       |              |    |     |                 |     | Р            |
|---------------|--------|-------|------|--------|-------|--------------|----|-----|-----------------|-----|--------------|
| Model: El     | _M3PON | 060K  |      |        |       |              |    |     |                 |     |              |
| Valu          | ıe     | Dc (% | %)   | Dmax ( | %)    | d(t) - 500n  | ns |     | P <sub>st</sub> |     | Pıt          |
| Lim           | it     | 3.30  | )    | 4.00   |       | 3.30%        |    |     | 1.00            |     | 0.65         |
|               | L1     | 0.03  | 0    | 0.365  |       | 0.0          |    |     | 0.119           |     | 0.116        |
| Test<br>value | L2     | 0.04  | 2    | 0.290  |       | 0.0          |    |     | 0.128           |     | 0.123        |
| value         | L3     | 0.75  | 8    | 1.296  |       | 0.0          |    |     | 0.179           |     | 0.151        |
|               | dc     | [%]   | dn   | nax[%] | (     | d(t)[ms]     |    | Ps  | t               |     | Plt          |
| Limit         | 3.     | 30    | 4    | 4.00   |       | 500<br>3.30% |    | 1.0 | 0               |     | 0.65<br>N:12 |
| No. 1         | 0.026  | Pass  | 0.25 | 8 Pass | 0.0   | Pass         | 0. | 117 | Pass            |     |              |
| 2             | 0.030  | Pass  | 0.28 |        | 0.0   |              |    | 114 | Pass            |     |              |
| 3             | 0.027  | Pass  | 0.25 |        | 0.0   |              |    | 116 | Pass            |     |              |
| 4             | 0.011  | Pass  | 0.21 |        | 0.0   |              |    | 115 | Pass            |     |              |
| 5             | 0.028  | Pass  | 0.22 |        | 0.0   |              |    | 114 | Pass            |     |              |
| 6             | 0.024  |       | 0.36 |        | 0.0   |              |    | 116 | Pass            |     |              |
| 7             | 0.023  | Pass  | 0.24 |        | 0.0   |              |    | 115 | Pass            |     |              |
| 8             | 0.025  | Pass  | 0.26 |        | 0.0   |              |    | 116 | Pass            |     |              |
| 9             | 0.027  | Pass  | 0.24 |        | 0.0   |              |    | 119 | Pass            |     |              |
| 10            | 0.026  |       | 0.22 |        | 0.0   |              |    | 117 | Pass            |     |              |
| 11            | 0.014  | Pass  | 0.25 |        | 0.0   |              |    | 116 | Pass            |     |              |
| 12<br>Popult  | 0.029  | Pass  | 0.25 |        | 0.0   |              | 0. | 116 | Pass            | 0.1 | 116 Door     |
| Result        |        | Pass  |      | Pass   | L1 ph | Pass         |    |     | Pass            | U.  | l16 Pass     |
|               | do     | [%]   | dr   | nax[%] |       | d(t)[ms]     |    | Ps  | t               |     | Plt          |
| Limit         |        | 30    |      | 4.00   |       | 500          |    | 1.0 |                 |     | 0.65         |
| LIIIIL        | 0.     | -     |      | 1.00   |       | 3.30%        |    | 1.0 | J               |     | N:12         |
| No. 1         | 0.023  | Pass  | 0.29 | 0 Pass | 0.0   |              | 0. | 126 | Pass            |     |              |
| 2             | 0.020  | Pass  | 0.26 |        | 0.0   |              |    | 123 | Pass            |     |              |
| 3             | 0.017  | Pass  | 0.24 |        | 0.0   |              |    | 128 | Pass            |     |              |
| 4             | 0.015  | Pass  | 0.23 | 4 Pass | 0.0   | Pass         | 0. | 122 | Pass            |     |              |
| 5             | 0.024  | Pass  | 0.15 | 3 Pass | 0.0   | Pass         | 0. | 123 | Pass            |     |              |
| 6             | 0.012  | Pass  | 0.18 | 1 Pass | 0.0   | Pass         | 0. | 123 | Pass            |     |              |
| 7             | 0.031  | Pass  | 0.16 | 4 Pass | 0.0   | Pass         | 0. | 123 | Pass            |     |              |
| 8             | 0.042  |       | 0.19 | 0 Pass | 0.0   |              | 0. | 124 | Pass            |     |              |
| 9             | 0.034  |       | 0.17 |        | 0.0   |              |    | 123 | Pass            |     |              |
| 10            | 0.033  | Pass  | 0.18 |        | 0.0   |              |    | 121 | Pass            |     |              |
| 11            | 0.021  | Pass  | 0.21 |        | 0.0   |              |    | 118 | Pass            |     |              |
| 12            | 0.031  | Pass  | 0.20 |        | 0.0   |              | 0. | 122 | Pass            |     |              |
| Result        |        | Pass  |      | Pass   |       | Pass         |    |     | Pass            | 0.1 | Pass         |
|               |        |       |      |        | L2 ph | ase          |    |     |                 |     |              |




Page 60 of 87

|        | dc[º  | %]   | dmax  | [%]  | d(t)     | [ms] | Ps    | t    | Р     | lt   |
|--------|-------|------|-------|------|----------|------|-------|------|-------|------|
| Limit  | 3.3   | 0    | 4.0   | 0    | 50       | 00   | 1.0   | 0    | 0.6   | 35   |
|        |       |      |       |      | 3.3      | 80%  |       |      | N:    | 12   |
| No. 1  | 0.118 | Pass | 0.257 | Pass | 0.0      | Pass | 0.117 | Pass |       |      |
| 2      | 0.156 | Pass | 0.209 | Pass | 0.0      | Pass | 0.163 | Pass |       |      |
| 3      | 0.078 | Pass | 0.165 | Pass | 0.0      | Pass | 0.179 | Pass |       |      |
| 4      | 0.580 | Pass | 1.168 | Pass | 0.0      | Pass | 0.142 | Pass |       |      |
| 5      | 0.153 | Pass | 1.191 | Pass | 0.0      | Pass | 0.157 | Pass |       |      |
| 6      | 0.106 | Pass | 0.303 | Pass | 0.0      | Pass | 0.118 | Pass |       |      |
| 7      | 0.224 | Pass | 0.437 | Pass | 0.0      | Pass | 0.156 | Pass |       |      |
| 8      | 0.115 | Pass | 0.219 | Pass | 0.0      | Pass | 0.146 | Pass |       |      |
| 9      | 0.758 | Pass | 1.296 | Pass | 0.0      | Pass | 0.162 | Pass |       |      |
| 10     | 0.693 | Pass | 1.189 | Pass | 0.0      | Pass | 0.153 | Pass |       |      |
| 11     | 0.211 | Pass | 0.539 | Pass | 0.0      | Pass | 0.154 | Pass |       |      |
| 12     | 0.071 | Pass | 0.275 | Pass | 0.0      | Pass | 0.148 | Pass |       |      |
| Result |       | Pass |       | Pass |          | Pass |       | Pass | 0.151 | Pass |
|        |       |      |       |      | L3 phase | ,    |       |      |       |      |



| 4.8      | TABLE: Ha        | rmonic current   | limit test       | (EN 61000-3-12   | ()               |                     |            |
|----------|------------------|------------------|------------------|------------------|------------------|---------------------|------------|
| Model    | ELM3PON0         | )60K             |                  |                  |                  |                     |            |
|          |                  | L1               |                  | L2               |                  | L3                  | Linette    |
| Harmonic | Magnitude<br>(A) | % of Fundamental | Magnitude<br>(A) | % of Fundamental | Magnitude<br>(A) | % of<br>Fundamental | Limits (%) |
| 1        | 86.939           | 99.980           | 86.939           | 99.983           | 86.939           | 99.979              |            |
| 2        | 0.637            | 0.733            | 0.805            | 0.926            | 0.867            | 0.997               | 8          |
| 3        | 0.679            | 0.781            | 0.541            | 0.622            | 0.594            | 0.683               | 21.6%      |
| 4        | 0.228            | 0.262            | 0.150            | 0.173            | 0.281            | 0.323               | 4          |
| 5        | 0.893            | 1.027            | 1.012            | 1.164            | 0.945            | 1.087               | 10.7       |
| 6        | 0.109            | 0.125            | 0.084            | 0.097            | 0.108            | 0.124               | 2.7        |
| 7        | 0.936            | 1.077            | 0.398            | 0.458            | 0.803            | 0.924               | 7.2        |
| 8        | 0.161            | 0.185            | 0.169            | 0.194            | 0.170            | 0.196               | 2          |
| 9        | 0.118            | 0.136            | 0.123            | 0.142            | 0.093            | 0.107               | N/A        |
| 10       | 0.072            | 0.083            | 0.097            | 0.111            | 0.087            | 0.100               | 1.6        |
| 11       | 0.301            | 0.346            | 0.416            | 0.478            | 0.402            | 0.462               | 3.1        |
| 12       | 0.091            | 0.105            | 0.104            | 0.120            | 0.083            | 0.096               | 1.3        |
| 13       | 0.297            | 0.342            | 0.146            | 0.168            | 0.203            | 0.234               | 2          |
| 14       | 0.075            | 0.086            | 0.088            | 0.101            | 0.095            | 0.109               | N/A        |
| 15       | 0.062            | 0.071            | 0.127            | 0.146            | 0.150            | 0.172               | N/A        |
| 16       | 0.063            | 0.072            | 0.090            | 0.104            | 0.095            | 0.109               | N/A        |
| 17       | 0.137            | 0.158            | 0.144            | 0.166            | 0.075            | 0.086               | N/A        |
| 18       | 0.058            | 0.067            | 0.060            | 0.069            | 0.073            | 0.084               | N/A        |
| 19       | 0.077            | 0.089            | 0.063            | 0.072            | 0.077            | 0.089               | N/A        |
| 20       | 0.030            | 0.035            | 0.049            | 0.056            | 0.051            | 0.059               | N/A        |
| 21       | 0.043            | 0.050            | 0.040            | 0.046            | 0.044            | 0.051               | N/A        |
| 22       | 0.028            | 0.032            | 0.044            | 0.051            | 0.050            | 0.057               | N/A        |
| 23       | 0.060            | 0.069            | 0.053            | 0.061            | 0.070            | 0.081               | N/A        |
| 24       | 0.026            | 0.030            | 0.034            | 0.039            | 0.042            | 0.048               | N/A        |
| 25       | 0.041            | 0.047            | 0.050            | 0.058            | 0.030            | 0.035               | N/A        |
| 26       | 0.019            | 0.022            | 0.030            | 0.034            | 0.032            | 0.037               | N/A        |
| 27       | 0.022            | 0.025            | 0.029            | 0.033            | 0.036            | 0.041               | N/A        |
| 28       | 0.016            | 0.018            | 0.028            | 0.032            | 0.030            | 0.035               | N/A        |
| 29       | 0.023            | 0.026            | 0.031            | 0.036            | 0.030            | 0.034               | N/A        |
| 30       | 0.012            | 0.014            | 0.019            | 0.022            | 0.025            | 0.029               | N/A        |
| 31       | 0.023            | 0.026            | 0.030            | 0.034            | 0.030            | 0.035               | N/A        |
| 32       | 0.012            | 0.014            | 0.020            | 0.023            | 0.025            | 0.029               | N/A        |
| 33       | 0.017            | 0.019            | 0.018            | 0.021            | 0.028            | 0.032               | N/A        |
| 34       | 0.010            | 0.012            | 0.017            | 0.020            | 0.026            | 0.030               | N/A        |
| 35       | 0.017            | 0.019            | 0.011            | 0.013            | 0.023            | 0.026               | N/A        |
| 36       | 0.010            | 0.011            | 0.016            | 0.018            | 0.024            | 0.028               | N/A        |
| 37       | 0.016            | 0.018            | 0.012            | 0.014            | 0.020            | 0.023               | N/A        |
| 38       | 0.009            | 0.010            | 0.013            | 0.015            | 0.022            | 0.025               | N/A        |
| 39       | 0.014            | 0.016            | 0.016            | 0.018            | 0.021            | 0.024               | N/A        |
| 40       | 0.010            | 0.012            | 0.012            | 0.014            | 0.020            | 0.023               | N/A        |
| THD      | -                | 1.977            | -                | 1.843            | -                | 2.039               | 13         |
| PWHD     | -                | 1.166            | -                | 1.390            | -                | 1.442               | 22         |





| 4.8      | TABLE: Ha        | rmonic current   | t limit test     | (EN 61000-3-12   | ?)               |                     |            |
|----------|------------------|------------------|------------------|------------------|------------------|---------------------|------------|
| Model    | ELM3PON0         | )30K             |                  |                  |                  |                     |            |
|          |                  | L1               |                  | L2               |                  | L3                  | 1 ::       |
| Harmonic | Magnitude<br>(A) | % of Fundamental | Magnitude<br>(A) | % of Fundamental | Magnitude<br>(A) | % of<br>Fundamental | Limits (%) |
| 1        | 43.478           | 100.000          | 43.478           | 100.000          | 43.478           | 100.000             |            |
| 2        | 0.009            | 0.021            | 0.009            | 0.021            | 0.018            | 0.041               | 8          |
| 3        | 0.036            | 0.082            | 0.039            | 0.090            | 0.037            | 0.086               | 21.6%      |
| 4        | 0.013            | 0.029            | 0.007            | 0.017            | 0.016            | 0.037               | 4          |
| 5        | 0.036            | 0.083            | 0.035            | 0.080            | 0.029            | 0.067               | 10.7       |
| 6        | 0.013            | 0.029            | 0.006            | 0.014            | 0.007            | 0.015               | 2.7        |
| 7        | 0.007            | 0.016            | 0.010            | 0.022            | 0.010            | 0.023               | 7.2        |
| 8        | 0.003            | 0.006            | 0.003            | 0.006            | 0.004            | 0.009               | 2          |
| 9        | 0.010            | 0.024            | 0.002            | 0.004            | 0.011            | 0.025               | N/A        |
| 10       | 0.002            | 0.004            | 0.005            | 0.012            | 0.005            | 0.012               | 1.6        |
| 11       | 0.032            | 0.073            | 0.030            | 0.069            | 0.033            | 0.075               | 3.1        |
| 12       | 0.010            | 0.024            | 0.007            | 0.015            | 0.008            | 0.019               | 1.3        |
| 13       | 0.018            | 0.042            | 0.018            | 0.041            | 0.017            | 0.038               | 2          |
| 14       | 0.004            | 0.010            | 0.005            | 0.012            | 0.007            | 0.016               | N/A        |
| 15       | 0.006            | 0.014            | 0.003            | 0.008            | 0.004            | 0.009               | N/A        |
| 16       | 0.006            | 0.014            | 0.007            | 0.017            | 0.008            | 0.019               | N/A        |
| 17       | 0.008            | 0.018            | 0.007            | 0.016            | 0.011            | 0.026               | N/A        |
| 18       | 0.007            | 0.017            | 0.007            | 0.015            | 0.011            | 0.026               | N/A        |
| 19       | 0.026            | 0.060            | 0.023            | 0.052            | 0.022            | 0.051               | N/A        |
| 20       | 0.007            | 0.017            | 0.006            | 0.013            | 0.007            | 0.016               | N/A        |
| 21       | 0.007            | 0.016            | 0.006            | 0.013            | 0.007            | 0.017               | N/A        |
| 22       | 0.008            | 0.019            | 0.004            | 0.010            | 0.005            | 0.011               | N/A        |
| 23       | 0.013            | 0.031            | 0.014            | 0.032            | 0.015            | 0.034               | N/A        |
| 24       | 0.008            | 0.019            | 0.009            | 0.020            | 0.010            | 0.023               | N/A        |
| 25       | 0.020            | 0.046            | 0.019            | 0.043            | 0.017            | 0.039               | N/A        |
| 26       | 0.005            | 0.012            | 0.005            | 0.012            | 0.007            | 0.015               | N/A        |
| 27       | 0.004            | 0.009            | 0.004            | 0.010            | 0.005            | 0.012               | N/A        |
| 28       | 0.005            | 0.011            | 0.007            | 0.015            | 0.005            | 0.011               | N/A        |
| 29       | 0.012            | 0.028            | 0.012            | 0.028            | 0.012            | 0.027               | N/A        |
| 30       | 0.007            | 0.015            | 0.005            | 0.012            | 0.007            | 0.015               | N/A        |
| 31       | 0.019            | 0.044            | 0.020            | 0.046            | 0.018            | 0.041               | N/A        |
| 32       | 0.005            | 0.012            | 0.004            | 0.009            | 0.005            | 0.011               | N/A        |
| 33       | 0.004            | 0.009            | 0.003            | 0.006            | 0.004            | 0.010               | N/A        |
| 34       | 0.007            | 0.015            | 0.008            | 0.018            | 0.007            | 0.017               | N/A        |
| 35       | 0.010            | 0.022            | 0.011            | 0.025            | 0.015            | 0.035               | N/A        |
| 36       | 0.007            | 0.015            | 0.006            | 0.014            | 0.007            | 0.016               | N/A        |
| 37       | 0.014            | 0.033            | 0.016            | 0.037            | 0.017            | 0.038               | N/A        |
| 38       | 0.003            | 0.008            | 0.004            | 0.009            | 0.003            | 0.008               | N/A        |
| 39       | 0.002            | 0.005            | 0.002            | 0.005            | 0.002            | 0.005               | N/A        |
| 40       | 0.006            | 0.013            | 0.006            | 0.014            | 0.007            | 0.015               | N/A        |
| THD      | -                | 0.849            | -                | 0.842            | -                | 0.853               | 13         |
| PWHD     | -                | 0.613            | -                | 0.610            | -                | 0.638               | 22         |



|                  | face protection                           |                                                 |                                                         |             | P      |
|------------------|-------------------------------------------|-------------------------------------------------|---------------------------------------------------------|-------------|--------|
|                  | age threshold stage                       | -                                               | _                                                       | Yes         | No     |
| Trip va          | alue Config. from 0.2                     | to 1 Un (0.01 Un s                              | steps)                                                  | Yes         |        |
| Trip             | time Config. from 0.1                     | to 100 s (0.1 s ste                             | eps)                                                    | Yes         |        |
| Parameter        | Settings                                  | Test 1                                          | Test 2                                                  | Test 3      | Limits |
| Trip value L1[V] | 46                                        | 45.03                                           | 45.01                                                   | 44.98       | 46±2.3 |
| Trip time [ms]   | 100                                       | 94.70                                           | 94.66                                                   | 94.67       | 100±10 |
| _2 [V]           | 46                                        | 45.15                                           | 45.02                                                   | 45.10       | 46±2.3 |
| Trip time [ms]   | 100                                       | 94.80                                           | 94.60                                                   | 94.61       | 100±10 |
| _3 [V]           | 46                                        | 45.12                                           | 45.03                                                   | 45.01       | 46±2.3 |
| Trip time [ms]   | 100                                       | 95.60                                           | 94.99                                                   | 94.98       | 100±10 |
| _1L2L3[V]        | 46                                        | 45.03                                           | 45.01                                                   | 45.02       | 46±2.3 |
| Trip time [ms]   | 100                                       | 95.20                                           | 95.03                                                   | 94.98       | 100±10 |
| Parameter        |                                           | 75.20 Test 1                                    | Test 2                                                  | Test 3      | Limits |
|                  | Settings                                  | 45.48                                           | 44.96                                                   | 44.98       | 46±2.3 |
| Trip value L1[V] | 46                                        |                                                 |                                                         |             |        |
| Frip time [s]    | 100                                       | 99.98                                           | 99.98                                                   | 99.94       | 100±10 |
| L2 [V]           | 46                                        | 45.72                                           | 45.32                                                   | 45.42       | 46±2.3 |
| Trip time [s]    | 100                                       | 99.72                                           | 99.75                                                   | 99.45       | 100±10 |
| L3 [V]           | 46                                        | 45.23                                           | 45.10                                                   | 45.23       | 46±2.3 |
| Trip time [s]    | 100                                       | 99.98                                           | 98.98                                                   | 99.96       | 100±10 |
| L1L2L3[V]        | 46                                        | 45.54                                           | 45.50                                                   | 45.63       | 46±2.3 |
| Trip time [s]    | 100                                       | 99.95<br>Trip time (0.7                         | 99.92                                                   | 99.91       | 100±10 |
|                  | 2 2 0.0 V 2 100 A Value 45.03 V           | 500 V Z 40.0ms<br>500 V Mean Min<br>45.03 45.03 | 500kS/s 500kS/s 5M points Max Std 45,03 0,00            | ms          |        |
|                  | 45.86 V                                   | 45.86 45.86<br>Trip time (10                    | 45.86 0.00                                              | 00          |        |
|                  | <b>Tek</b> PreVu                          | M 100 s                                         |                                                         |             |        |
|                  | 4 2 3 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Zoom Position: 305 s                            | 3                                                       |             |        |
|                  | <b>a</b>                                  |                                                 | <ul><li>3 246.9</li><li>3 346.8</li><li>Δ99.9</li></ul> | s 21.58 V   |        |
|                  | 2)                                        |                                                 |                                                         |             |        |
|                  | 3                                         |                                                 |                                                         |             |        |
|                  | 3 20.0 V 2 3 100 A Value                  | 500 V<br>500 V<br>Mean Min                      | 5M points                                               | 2<br>30.0 V |        |





| Table 4.9.3 Inter | rface protection                     |                                                 |                                   |               | Р      |
|-------------------|--------------------------------------|-------------------------------------------------|-----------------------------------|---------------|--------|
| Trip v            | alue Config. from 0.2                | to 1 Un (0.01 Un s                              | steps)                            | Yes           |        |
| Trip              | time Config. from 0.1                | I to 5s (0.05 s step                            | os)                               | Yes           |        |
| Parameter         | Settings                             | Test 1                                          | Test 2                            | Test 3        | Limits |
| Trip value L1 [V] | 46                                   | 45.04                                           | 44.88                             | 44.96         | 46±2.3 |
| Trip time [ms]    | 100                                  | 94.30                                           | 94.18                             | 94.29         | 100±10 |
| L2 [V]            | 46                                   | 45.34                                           | 45.29                             | 45.30         | 46±2.3 |
| Trip time [ms]    | 100                                  | 96.00                                           | 95.86                             | 95.98         | 100±10 |
| L3 [V]            | 46                                   | 45.23                                           | 45.12                             | 45.16         | 46±2.3 |
| Trip time [ms]    | 100                                  | 96.00                                           | 95.98                             | 95.94         | 100±10 |
| _1L2L3[V]         | 46                                   | 45.25                                           | 45.80                             | 45.89         | 46±2.3 |
| Trip time [ms]    | 100                                  | 96.00                                           | 95.99                             | 95.97         | 100±10 |
| Parameter         | Settings                             | Test 1                                          |                                   |               | Limits |
| Γrip value L1 [V] | 46                                   | 45.10                                           | 44.79                             | 44.88         | 46±2.3 |
| Trip time [s]     | 5                                    | 4.98                                            | 4.96                              | 4.99          | 5±0.05 |
| L2 [V]            | 46                                   | 45.56                                           | 45.75                             | 45.50         | 46±2.3 |
| Trip time [s]     | 5                                    | 4.99                                            | 4.96                              | 4.98          | 5±0.05 |
| L3 [V]            | 46                                   | 45.55                                           | 45.45                             | 45.38         | 46±2.3 |
| Trip time [s]     | 5                                    | 4.99                                            | 4.96                              | 4.96          | 5±0.05 |
| L1L2L3[V]         | 46                                   | 45.08                                           | 45.32                             | 45.36         | 46±2.3 |
| Trip time [s]     | 5                                    | 4.98<br>Trip time (0.                           | 4.99                              | 4.97          | 5±0.05 |
|                   | 3 20.0 V 2 100 A Value 2 RMS 45.25 V | 500 V Z 40.0ms<br>500 V Mean Min<br>45.25 45.25 | 5M points  Max Std 45.25 0.00     |               |        |
|                   | (4) RMS 45.90 V                      | 45.90 45.90 Trip time (5                        | 45.90 0.00<br>s setting)          | )             |        |
|                   | Tek PreVu  4                         | M 2.00 s                                        |                                   | 7             |        |
|                   | Zoom Factor: 2 X                     | Zoom Position: 1.41 s                           |                                   |               |        |
|                   | 3                                    | 200m Position: 1.41 S                           | (a) -2.587<br>(b) 2.393<br>Δ4.980 | s 1.397 V     |        |
|                   | 3                                    |                                                 |                                   |               |        |
|                   | 20.0 V<br>3 100 A                    | 500 V<br>500 V                                  | 5M points                         | 2 /<br>30.0 V |        |
|                   | Value<br>2 RMS 45.08 V               | Mean Min<br>45.08 45.08                         | Max Std<br>45.08 0.0              |               |        |



|                                                | ce protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Р                 |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| _                                              | threshold stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No                |
| Trip value                                     | Config. from 1.0 t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o 1.2 Un (0.01 Ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n steps)                                                                                                                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| Trip tim                                       | ne Config. from 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to 100s (0.1 s st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | teps)                                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| Parameter                                      | Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test 2                                                                                                                    | Test 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Limits            |
| Trip value L1 [V]                              | 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 276.0                                                                                                                     | 276.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 276±2.3           |
| rip time [ms]                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.60                                                                                                                     | 95.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100±10            |
| _2 [V]                                         | 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 277.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 276.3                                                                                                                     | 276.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 276±2.3           |
| Trip time [ms]                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94.50                                                                                                                     | 94.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100±10            |
| _3 [V]                                         | 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 277.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 276.5                                                                                                                     | 276.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 276±2.3           |
| Trip time [ms]                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94.70                                                                                                                     | 94.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100±10            |
| _1L2L3[V]                                      | 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 277.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 276.8                                                                                                                     | 276.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 276±2.3           |
| Trip time [ms]                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.70                                                                                                                     | 96.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100±10            |
| Parameter                                      | Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test 2                                                                                                                    | Test 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Limits            |
| Trip value L1 [V]                              | 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 277.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 277.2                                                                                                                     | 276.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 276±2.3           |
| Trip time [s]                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.20                                                                                                                     | 98.30<br>276.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100±10            |
| _2 [V]<br>Frip time [s]                        | 276<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 277.4<br>99.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 276.5<br>98.60                                                                                                            | 276.3<br>94.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 276±2.3           |
| _3 [V]                                         | 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99.28<br>276.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 276.8                                                                                                                     | 94.20<br>276.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100±10<br>276±2.3 |
| Lo [v]<br>Trip time [s]                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.50                                                                                                                     | 97.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 276±2.3<br>100±10 |
| L1L2L3[V]                                      | 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 277.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 276.6                                                                                                                     | 276.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 276±2.3           |
| Trip time [s]                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98.00                                                                                                                     | 99.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100±10            |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trip time (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Tel<br>4                                       | <b>K</b> PreVu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s ba                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| <b>2</b> )                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| <u>D</u> .                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Ļ                                              | Zoom Factor: 5 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zoom Position: 2.24 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                | i<br>Enahanahanihanahanahahihanah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AAAAAAAAAAAAAAAAAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d                                                                        | 3 s 1.294 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| 4)                                             | #YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ŦŊŶĠŶŊŶŊŶŊŶŊŶŖĠŊŶĠŶŊŶŶŶŶŶŶ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.41                                                                                                                      | 4 s 21.76 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|                                                | ********************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ******************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           | Oms <u>\( \Delta 20.47 \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 2)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ELANCANDA CANDANDA NANDANDANDANDANDANDANDANDANDANDANDANDAND                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                | ז הוא                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | באנאנלאנלאנלאנלאנלאנלאנלאנלאנלאנלאנלאנלאנ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 181808080                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 3                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                  | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| D                                              | 20.0 V <b>2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 V \(\bar{Z}\) 200ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500kS/s                                                                                                                   | 2 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| D)                                             | 1 20.0 V 2<br>3 100 A 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500 V Z 200ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5M points                                                                                                                 | 30.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|                                                | 3 100 A Value 2 RMS 229.7 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500 V Mean Min 229.7 229.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5M points  Max Str 229.7 0.1                                                                                              | 30.0 V i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| D                                              | 3 100 A 4 Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean Min<br>229.7 229.7<br>276.0 276.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5M points  Max Str. 229.7 0.1 276.0 0.1                                                                                   | 30.0 V   i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| Tek                                            | 3 100 A Value 2 RMS 229.7 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500 V Mean Min 229.7 229.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5M points  Max Str. 229.7 0.1 276.0 0.0  00s setting)                                                                     | 30.0 V i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| Tek                                            | 2 RMS 229.7 V RMS 276.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean Min<br>229.7 229.7<br>276.0 276.0<br>Trip time (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5M points  Max Str. 229.7 0.1 276.0 0.0  00s setting)                                                                     | 30.0 V i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| 4                                              | 2 RMS 229.7 V RMS 276.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean Min<br>229.7 229.7<br>276.0 276.0<br>Trip time (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5M points  Max Str. 229.7 0.1 276.0 0.0  00s setting)                                                                     | 30.0 V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|                                                | 2 RMS 229.7 V RMS 276.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean Min<br>229.7 229.7<br>276.0 276.0<br>Trip time (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5M points  Max Str. 229.7 0.1 276.0 0.0  00s setting)                                                                     | 30.0 V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| 4)<br>2)<br>3)<br>1)                           | 2 RMS 229.7 V RMS 276.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean Min<br>229.7 229.7<br>276.0 276.0<br>Trip time (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5M points  Max Str. 229.7 0.1 276.0 0.0  00s setting)                                                                     | 30.0 V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| 4)<br>2)<br>3)<br>1)                           | 3 100 A Value 2 RMS 229.7 V 1 RMS 276.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean Min 229.7 229.7 276.0 276.0 Trip time (10 M 100 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5M points  Max St. 229.7 0,1 276.0 0,1  00s setting)                                                                      | 30.0 V 1 Dev 1000 1000 1000 1000 1000 1000 1000 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 4)<br>2)<br>3)<br>1)                           | 3 100 A Value 2 RMS 229.7 V 1 RMS 276.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean Min 229.7 229.7 276.0 276.0 Trip time (10 M 100 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5M points  Max St. 229.7 0.1 276.0 0.1  00s setting)                                                                      | 30.0 V d Dev 2000 D De |                   |
| 4)<br>2)<br>3)<br>1)<br>Z                      | 3 100 A Value 2 RMS 229.7 V 1 RMS 276.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean Min 229.7 229.7 276.0 276.0 Trip time (10 M 100 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5M points  Max St. 229.7 0,1 276.0 0,1  00s setting)                                                                      | 30.0 V<br>d Dev<br>0000<br>000 000 000 000 000 000 000 000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| 4)<br>2)<br>3)<br>1)<br>Z                      | 3 100 A Value 2 RMS 229.7 V 1 RMS 276.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean Min 229.7 229.7 276.0 276.0 Trip time (10 M 100 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5M points  Max                                                                                                            | 30.0 V<br>d Dev<br>0000<br>000 000 000 000 000 000 000 000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| 4)<br>2)<br>3)<br>1)<br>Z                      | 3 100 A Value 2 RMS 229.7 V 1 RMS 276.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean Min 229.7 229.7 276.0 276.0 Trip time (10 M 100 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5M points  Max                                                                                                            | 30.0 V<br>d Dev<br>0000<br>000 000 000 000 000 000 000 000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| 4)<br>2)<br>3)<br>1)<br>Z                      | 3 100 A Value 2 RMS 229.7 V 1 RMS 276.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean Min 229.7 229.7 276.0 276.0 Trip time (10 M 100 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5M points  Max                                                                                                            | 30.0 V<br>d Dev<br>0000<br>000 000 000 000 000 000 000 000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| 4\<br>2\<br>3\<br>10\<br>Z                     | 3 100 A Value 2 RMS 229.7 V 1 RMS 276.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean Min 229.7 229.7 276.0 276.0 Trip time (10 M 100 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5M points  Max                                                                                                            | 30.0 V<br>d Dev<br>0000<br>000 000 000 000 000 000 000 000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| 4<br>2<br>3<br>1<br>7<br>2                     | 3 100 A Value 2 RMS 229.7 V 1 RMS 276.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean Min 229.7 229.7 276.0 276.0 Trip time (10 M 100 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5M points  Max                                                                                                            | 30.0 V<br>d Dev<br>0000<br>000 000 000 000 000 000 000 000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| 4 2 3 3 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7    | 3 100 A Value 22 RMS 229.7 V RMS 276.0 V PreVu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean Min 229.7 229.7 276.0 276.0 Trip time (1 M 100 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5M points  Max St. 229.7 0.1 276.0 0.1  OOs setting)  a 331. b 430.                                                       | 30.0 V d Dev 3000 3000 3000 3000 3000 3000 3000 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 4<br>2<br>3<br>1<br>7<br>2                     | 22 RMS 229,7 V RMS 276.0 V  PreVu  20 PreVu  21 20.0 V 22 RMS 23 RMS 276.0 V 24 RMS 276.0 V 25 RMS 276.0 V 26 RMS 276.0 V 27 RMS | Zoom Position: 387 s  Zoom V Min 229.7 276.0  Trip time (1) M 100 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5M points  Max St. 229.7 0.1 276.0 0.1  00s setting)  3 331. 5 430.                                                       | 30.0 V 10 Dev 1000 1000 1000 1000 1000 1000 1000 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| 4 2 3 3 10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 3 100 A  Value  Value  Value  Value  Value  Value  Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean   Min   229.7   229.7   2276.0   276.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5M points  Max St. 229.7 0.1 276.0 0.1  00s setting)  3 331. 3 430. Δ99.3  1s 500kS/s 5M points  Max St                   | 30.0 V d Dev 3000 3000 3000 3000 3000 3000 3000 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| 4 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4        | 22 RMS 229,7 V RMS 276.0 V  PreVu  20 PreVu  21 20.0 V 22 RMS 23 RMS 276.0 V 24 RMS 276.0 V 25 RMS 276.0 V 26 RMS 276.0 V 27 RMS | Mean Min   229.7   229.7   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   277.4   2 | 5M points  Max St. 229.7 0.1 276.0 0.1  OOs setting)  a 331. b 430. Δ99.  15 500kS/s 5M points  Max St. 277.4 0. 277.4 0. | 30.0 V 10 Dev 1000 1000 1000 1000 1000 1000 1000 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |



|                                                            | ace protection                                                     |                             |                                                                                 |                                            | Р       |  |  |
|------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------|--------------------------------------------|---------|--|--|
| Trip value Config. from 1.0 to 1.3 Un (0.01 Un steps)  Yes |                                                                    |                             |                                                                                 |                                            |         |  |  |
| Trip                                                       | time Config. from 0.                                               | 1 to 5s (0.05s ste          | eps)                                                                            | Yes                                        |         |  |  |
| Parameter                                                  | Settings                                                           | Test 1                      | Test 2                                                                          | Test 3                                     | Limits  |  |  |
| Trip value L1 [V]                                          | 299                                                                | 299.5                       | 299.4                                                                           | 299.3                                      | 299±2.3 |  |  |
| Trip time [ms]                                             | 100                                                                | 95.00                       | 95.20                                                                           | 94.60                                      | 100±10  |  |  |
| L2 [V]                                                     | 299                                                                | 299.2                       | 299.1                                                                           | 299.6                                      | 299±2.3 |  |  |
| Trip time [ms]                                             | 100                                                                | 94.80                       | 94.60                                                                           | 94.30                                      | 100±10  |  |  |
| L3 [V]                                                     | 299                                                                | 299.2                       | 299.8                                                                           | 299.9                                      | 299±2.3 |  |  |
| Trip time [ms]                                             | 100                                                                | 99.80                       | 99.50                                                                           | 99.70                                      | 100±10  |  |  |
| L1L2L3[V]                                                  | 299                                                                | 299.6                       | 299.6                                                                           | 299.7                                      | 299±2.3 |  |  |
| Trip time [ms]                                             | 100                                                                | 94.60                       | 94.50                                                                           | 94.50                                      | 100±10  |  |  |
| Parameter                                                  | Settings                                                           | Test 1                      | Test 2                                                                          | Test 3                                     | Limits  |  |  |
| Trip value L1 [V]                                          | 299                                                                | 299.7                       | 299.6                                                                           | 299.2                                      | 299±2.3 |  |  |
| Trip time [s]                                              | 5                                                                  | 4.99                        | 4.96                                                                            | 4.98                                       | 5±0.05  |  |  |
| L2 [V]                                                     | 299                                                                | 299.2                       | 299.6                                                                           | 299.8                                      | 299±2.3 |  |  |
| Trip time [s]                                              | 5                                                                  | 4.97                        | 4.99                                                                            | 4.98                                       | 5±0.05  |  |  |
| L3 [V]                                                     | 299                                                                | 299.4                       | 299.6                                                                           | 299.8                                      | 299±2.3 |  |  |
| Trip time [ms]                                             | 5                                                                  | 4.96                        | 4.96                                                                            | 4.98                                       | 5±0.05  |  |  |
| L1L2L3[V]                                                  | 299                                                                | 299.0                       | 299.4                                                                           | 299.9                                      | 299±2.3 |  |  |
| Trip time [s]                                              | 5                                                                  | 4.99                        | 4.96                                                                            | 4.97                                       | 5±0.05  |  |  |
|                                                            | Zoom Factor: 20 X  2000 V 2010 A Value 2 RMS 299.6 V 3 RMS 299.8 V | Zoom Position: 431ms  500 V | 3 374.80<br>3 374.80<br>5 469.40<br>Δ94.600<br>1 299.6<br>299.6<br>299.8<br>0.0 | ms 21.47 V<br>20.16 V  22.7.8 V  4 Dew 100 |         |  |  |
| 1                                                          | <b>řek</b> PreVu                                                   | Trip time (                 | 5s setting)                                                                     |                                            |         |  |  |
| Ū                                                          |                                                                    | <b>a</b>                    | Б                                                                               |                                            |         |  |  |
|                                                            | Zoom Factor: 2 X                                                   | Zoom Position: 1.09 s       |                                                                                 |                                            |         |  |  |
| Q                                                          | D.                                                                 |                             | <b>a</b> −2.07<br><b>b</b> 2.918<br>△4.99                                       | 3 s 21.78 V                                |         |  |  |
| Ü                                                          |                                                                    |                             |                                                                                 |                                            |         |  |  |
| Q                                                          | D                                                                  |                             |                                                                                 |                                            |         |  |  |
|                                                            | F                                                                  | 1                           |                                                                                 |                                            |         |  |  |
| ĵ                                                          | 1 20.0 V 2<br>3 100 A 4                                            | 500 V<br>500 V              | : 250kS/s<br>5M points                                                          | 2 /<br>27.8 V                              |         |  |  |



| Trip time Cont  Parameter  Trip value L1 [V]  Trip time [s]  L2 [V]  Trip time [s]  L3 [V]  Trip time [s] |                                                          | to 1.15Un (0.01 U<br>able Time delay so<br>Test 1<br>253.0<br>411<br>253.0<br>403<br>253.0<br>405 |                                                 | Yes Yes Test 3 253.0 401 253.0 403 253.0 | <br>Limits<br>253±1%<br>≤ 603s<br>253±1%<br>≤ 603s |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|----------------------------------------------------|
| Parameter Trip value L1 [V] Trip time [s] L2 [V] Trip time [s] L3 [V] Trip time [s]                       | Settings 253 < 603s 253 < 603s 253 < 603s 253 < 603s 253 | Test 1 253.0 411 253.0 403 253.0 405                                                              | Test 2<br>253.0<br>407<br>253.0<br>406<br>253.0 | Test 3<br>253.0<br>401<br>253.0<br>403   | Limits 253±1% ≤ 603s 253±1% ≤ 603s                 |
| Trip value L1 [V] Trip time [s] L2 [V] Trip time [s] L3 [V] Trip time [s]                                 | 253 < 603s 253 < 603s 253 < 603s 253 < 503s 253          | 253.0<br>411<br>253.0<br>403<br>253.0<br>405                                                      | 253.0<br>407<br>253.0<br>406<br>253.0           | 253.0<br>401<br>253.0<br>403             | 253±1%<br>≤ 603s<br>253±1%<br>≤ 603s               |
| Trip time [s] L2 [V] Trip time [s] L3 [V] Trip time [s]                                                   | < 603s<br>253<br>< 603s<br>253<br>< 603s<br>253          | 411<br>253.0<br>403<br>253.0<br>405                                                               | 407<br>253.0<br>406<br>253.0                    | 401<br>253.0<br>403                      | ≤ 603s<br>253±1%<br>≤ 603s                         |
| L2 [V] Trip time [s] L3 [V] Trip time [s]                                                                 | 253<br>< 603s<br>253<br>< 603s<br>253                    | 253.0<br>403<br>253.0<br>405                                                                      | 253.0<br>406<br>253.0                           | 253.0<br>403                             | 253±1%<br>≤ 603s                                   |
| Trip time [s] L3 [V] Trip time [s]                                                                        | < 603s<br>253<br>< 603s<br>253                           | 403<br>253.0<br>405                                                                               | 406<br>253.0                                    | 403                                      | ≤ 603s                                             |
| L3 [V]<br>Trip time [s]                                                                                   | 253<br>< 603s<br>253                                     | 253.0<br>405                                                                                      | 253.0                                           |                                          |                                                    |
| L3 [V]<br>Trip time [s]                                                                                   | < 603s<br>253                                            | 405                                                                                               |                                                 | 253.0                                    |                                                    |
|                                                                                                           | 253                                                      |                                                                                                   | 402                                             |                                          | 253±1%                                             |
| 1 41 01 01/7                                                                                              |                                                          | 050.04                                                                                            | 402                                             | 401                                      | ≤ 603s                                             |
| L1L2L3[V]                                                                                                 | < 603s                                                   | 253.04                                                                                            | 253.02                                          | 253.08                                   | 253±1%                                             |
| Trip time [s]                                                                                             |                                                          | 405                                                                                               | 403                                             | 402                                      | ≤ 603s                                             |
|                                                                                                           |                                                          | Graph_                                                                                            | L1L2L3                                          |                                          |                                                    |
| Power(b.u.)                                                                                               | 100%                                                     |                                                                                                   |                                                 | 95%                                      | Voltage(p.u.)                                      |



| Table 4.9.3 Interfa                                                         | ace protection                                                                                               |                            |                  |                                  | Р         |  |  |  |  |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|------------------|----------------------------------|-----------|--|--|--|--|
| Underfrequency threshold stage 1 [81 < ] Adjustment range Yes               |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
| Trip value Config. from 47.0 to 50.0Hz (0.1Hz steps)                        |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
| Trip time Config. from 0.1 to 100s (0.1s steps)                             |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
| t may be required to have the ability to activate and deactivate a stage by |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
| an external signal.                                                         | n external signal.                                                                                           |                            |                  |                                  |           |  |  |  |  |
| This protection trip                                                        | nis protection trips in the range from 0.2Un to 1.20Un.it is inhibited for put voltages of less than 20 % Un |                            |                  |                                  |           |  |  |  |  |
| Parameter                                                                   | Settings                                                                                                     | Test 1                     | Test 2           | Test 3                           | Limits    |  |  |  |  |
| Trip value [Hz]                                                             | 47                                                                                                           | 46.99                      | 46.98            | 46.98                            | 47.0±0.05 |  |  |  |  |
| Trip time [ms]                                                              | 100                                                                                                          | 95.80                      | 92.65            | 98.52                            | 100±10    |  |  |  |  |
| Parameter                                                                   | Settings                                                                                                     | Test 1                     | Test 2           | Test 3                           | Limits    |  |  |  |  |
| Trip value [Hz]                                                             | 47                                                                                                           | 46.97                      | 47.00            | 46.99                            | 47.0±0.05 |  |  |  |  |
| Trip time [s]                                                               | 100                                                                                                          | 99.60                      | 96.50            | 97.58                            | 100±10    |  |  |  |  |
| <b>Tek</b> Pre                                                              | /u                                                                                                           | Trip time (0.              | is setting)      |                                  |           |  |  |  |  |
| 4                                                                           |                                                                                                              | <u> </u>                   | 6                |                                  |           |  |  |  |  |
| 3                                                                           |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
|                                                                             |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
| Zoom                                                                        | Factor: 50 X Z                                                                                               | oom Position: 3.84 s       | #                |                                  |           |  |  |  |  |
|                                                                             | : :                                                                                                          | <b>a</b>                   | <b>6</b> :       |                                  |           |  |  |  |  |
|                                                                             | Λ· Λ· Λ· Λ· Λ· Λ·                                                                                            |                            |                  | 526 s 1.338 V<br>584 s 21.96 V   |           |  |  |  |  |
| <b>4</b>                                                                    | -\./; \                                                                                                      | / \/-\/ <sub>!</sub> \/-\# |                  | 800ms △20.62 V                   |           |  |  |  |  |
| **                                                                          |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
|                                                                             |                                                                                                              | <u> </u>                   |                  |                                  |           |  |  |  |  |
| 3                                                                           | (/\//\//\/                                                                                                   | '\/\/\/\ <u>/</u>          | \                |                                  |           |  |  |  |  |
| V                                                                           | V-   V - V-   V - V-                                                                                         | V V V                      | V                |                                  |           |  |  |  |  |
|                                                                             |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
| <b>D</b>                                                                    |                                                                                                              | <del>-</del>               |                  |                                  |           |  |  |  |  |
|                                                                             | 20.0 V                                                                                                       | Z 40.0ms                   |                  | 20 0 4                           |           |  |  |  |  |
| 3                                                                           | 100 A 4 5                                                                                                    | 500 V ∬<br>Mean Min        | 5M points<br>Max | 30.0 V<br>Std Dev                |           |  |  |  |  |
| 4                                                                           | requency 46.99 Hz                                                                                            | 46.99 46.99                |                  | 0.000                            |           |  |  |  |  |
| <b>Tek</b> Pre                                                              | /u                                                                                                           | Trip time (10<br>M 200 s   | Ous setting)     |                                  |           |  |  |  |  |
| 4                                                                           |                                                                                                              | •                          |                  | _ <u>ab</u> _                    |           |  |  |  |  |
|                                                                             |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
| 3                                                                           |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
|                                                                             | Factor: 10 X Z                                                                                               | oom Position: 863 s        |                  |                                  |           |  |  |  |  |
| :                                                                           | : : : :                                                                                                      | <b>a</b>                   | :                | •                                |           |  |  |  |  |
|                                                                             |                                                                                                              |                            |                  | 8.2 s 965.6mV `<br>7.8 s 21.52 V |           |  |  |  |  |
| <b>4</b>                                                                    |                                                                                                              |                            |                  | 9.60 s △20.56 V                  |           |  |  |  |  |
|                                                                             |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
|                                                                             |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
|                                                                             |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
| 3                                                                           |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
| <u> </u>                                                                    |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
| <u> </u>                                                                    |                                                                                                              |                            |                  |                                  |           |  |  |  |  |
|                                                                             | 20.0 V                                                                                                       |                            | : :<br>2.50kS/s  | 2 /                              |           |  |  |  |  |
| 3                                                                           |                                                                                                              | 500 V<br>Mean Min          | 5M points<br>Max | 0.00 V<br>Std Dev                |           |  |  |  |  |
|                                                                             | Value                                                                                                        |                            |                  |                                  |           |  |  |  |  |



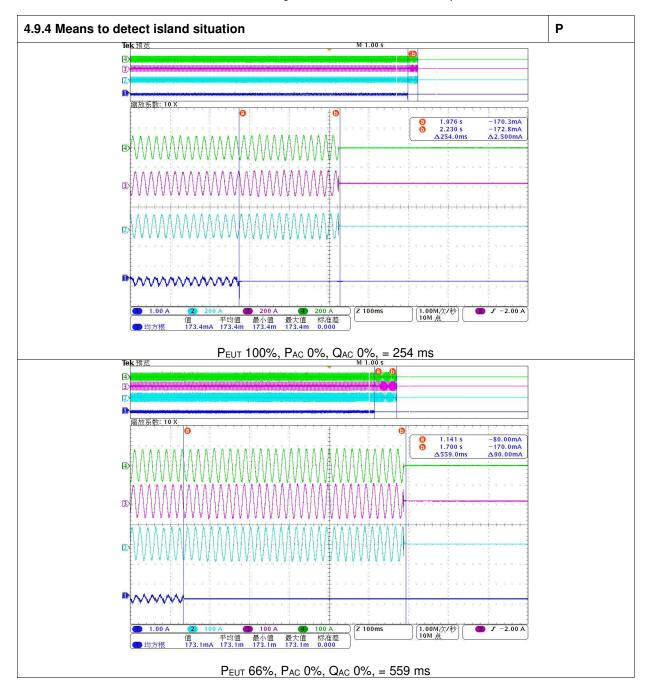
| Table 4.9.3 Interfa                | ice protection                                                     |                           |                                  |                                   | Р         |
|------------------------------------|--------------------------------------------------------------------|---------------------------|----------------------------------|-----------------------------------|-----------|
| Underfrequen                       | No                                                                 |                           |                                  |                                   |           |
| Trip val                           | ue Config. from 47.                                                | Yes                       |                                  |                                   |           |
| Trip                               | time Config. from                                                  | Yes                       |                                  |                                   |           |
| may be required n external signal. | to have the ability                                                | by                        | No                               |                                   |           |
|                                    | s in the range fromess than 20 % Un                                | 0.2Un to 1.20Ur           | n.it is inhibited for            |                                   | No        |
| Parameter                          | Settings                                                           | Test 1                    | Test 2                           | Test 3                            | Limits    |
| rip value [Hz]                     | 47                                                                 | 46.98                     | 47.00                            | 46.99                             | 47.0±0.05 |
| rip time [ms]                      | 100                                                                | 99.00                     | 91.77                            | 95.95                             | 100±10    |
| Parameter                          | Settings                                                           | Test 1                    | Test 2                           | Test 3                            | Limits    |
| rip value [Hz]                     | 47                                                                 | 46.98                     | 46.98                            | 47.00                             | 47.0±0.05 |
| rip time [s]                       | 5                                                                  | 4.98                      | 4.99                             | 4.99                              | 5±0.05    |
| T-1. 0                             | ito                                                                | Trip time (               | 0.1s setting)                    |                                   |           |
| Tek Pre                            | vu                                                                 | IVI 2.U                   | o s                              |                                   |           |
| 4                                  |                                                                    |                           |                                  |                                   |           |
| 3                                  |                                                                    |                           | -                                |                                   |           |
| <b>D</b>                           |                                                                    |                           |                                  |                                   |           |
| Zoom                               | Factor: 50 X Z                                                     | oom Position: 3.76 s      | Щ                                |                                   |           |
|                                    |                                                                    | <b>3</b>                  | <b>+ 6</b>                       |                                   |           |
| <u>.</u>                           | A :                                                                | N                         |                                  | 3.6758 s 1.322                    |           |
| <b>⊕</b>                           | '.\. <i>f</i> :\                                                   | #\                        |                                  | 3.7748 s 21.86<br>99.000ms ∆20.54 |           |
|                                    |                                                                    |                           | 1 Y Y - 1                        | <u> </u>                          |           |
|                                    |                                                                    |                           | <u> </u>                         |                                   |           |
| 3                                  |                                                                    |                           |                                  |                                   |           |
|                                    |                                                                    |                           |                                  |                                   |           |
|                                    |                                                                    |                           |                                  |                                   |           |
|                                    | 20.0 V                                                             | (Z 40.0                   | 1 250kS/s                        | 2 /                               |           |
| 3                                  | 100 A 4 5                                                          | 500 V                     | 5M points                        | 30.0 V                            |           |
|                                    | Value<br>Frequency 46.98 Hz                                        | Mean Min<br>46.98 46.9    | Max<br>98 46.98                  | Std Dev<br>0.000                  |           |
|                                    |                                                                    | Trip time                 | (5s setting)                     | 0.000                             |           |
| Tek Pre                            | Vu                                                                 | M 20.                     | 0 s                              |                                   |           |
| 4                                  |                                                                    |                           |                                  |                                   |           |
| 3>                                 |                                                                    |                           |                                  |                                   |           |
| 1                                  |                                                                    |                           |                                  |                                   |           |
|                                    | Factor: 10 X Z                                                     | oom Position: 81.2 s      |                                  | <u> </u>                          |           |
|                                    |                                                                    | <b>(</b>                  | <b>6</b>                         |                                   | <u> </u>  |
|                                    | [ [                                                                |                           | <u>‡</u> [                       | 78.40 s 1.522                     |           |
| 4                                  |                                                                    |                           | <b>.</b>                         | 83.38 s 22.01<br>Δ4.980 s Δ20.49  |           |
|                                    |                                                                    |                           | I :                              |                                   |           |
| E                                  |                                                                    |                           |                                  |                                   |           |
|                                    |                                                                    |                           |                                  |                                   |           |
| 3                                  |                                                                    |                           |                                  | <u> </u>                          |           |
|                                    | n his kronik a gjava v kiti a silavnik kralja ka kralja kralja kra | alda janan talan jana ara |                                  |                                   | 3         |
| <u> </u>                           |                                                                    |                           | ‡                                |                                   |           |
| <u> </u>                           | · · · · · · · · · · · · · · · · · · ·                              | <del></del>               |                                  |                                   |           |
|                                    |                                                                    |                           | 4 .                              |                                   | :         |
|                                    | 20.0 V                                                             | )(Z 2.00                  | s 25.0kS/s                       | <b>2</b> ✓ ) i                    |           |
| 3                                  |                                                                    | Z 2.00<br>  S00 V         | 0 s 25.0kS/s<br>5M points<br>Max |                                   |           |



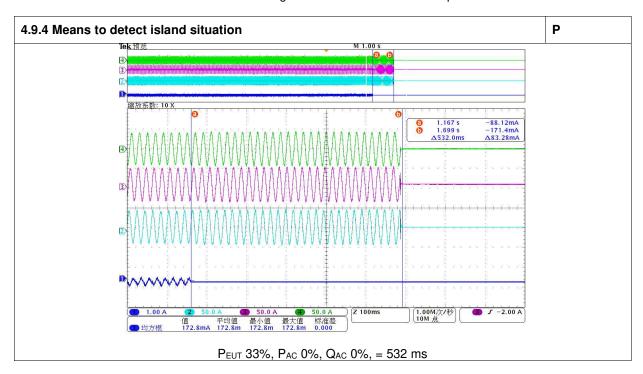
| Table 4.9.3 Interfac                                                                                         | e protection                            |                                                |                         |                            | Р           |  |  |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------|----------------------------|-------------|--|--|
| Overfrequency threshold stage 1 [81 > ] Adjustment range Yes                                                 |                                         |                                                |                         |                            |             |  |  |
| Trip value Config. from 50.0 to 52.0Hz (0.1Hz steps)                                                         |                                         |                                                |                         |                            |             |  |  |
| Trip time Config. from 0.1 to 100s (0.1s steps)  Yes                                                         |                                         |                                                |                         |                            |             |  |  |
| it may be required to have the ability to activate and deactivate a stage by an external signal.             |                                         |                                                |                         |                            |             |  |  |
| his protection trips in the range from 0.2Un to 1.20Un.it is inhibited for put voltages of less than 20 % Un |                                         |                                                |                         |                            |             |  |  |
| Parameter                                                                                                    | Settings                                | Test 1                                         | Test 2                  | Test 3                     | Limits      |  |  |
| rip value [Hz]                                                                                               | 52                                      | 52.01                                          | 52.00                   | 52.01                      | 52.0±0.05   |  |  |
| rip time [ms]                                                                                                | 100                                     | 99.80                                          | 90.18                   | 95.33                      | 100±10      |  |  |
| Parameter                                                                                                    | Settings                                | Test 1                                         | Test 2                  | Test 3                     | Limits      |  |  |
| rip value [Hz]                                                                                               | 52                                      | 52.01                                          | 52.01                   | 52.00                      | 52.0±0.05   |  |  |
| rip time [s]                                                                                                 | 100                                     | 97.00                                          | 98.72                   | 95.87                      | 100±10      |  |  |
|                                                                                                              |                                         | Trip time (0                                   | .1s setting)            |                            |             |  |  |
| <b>Tek</b> PreVu                                                                                             |                                         | M 2.00                                         | s<br><b>6</b> a         |                            |             |  |  |
| 4                                                                                                            |                                         |                                                | 10 0                    |                            |             |  |  |
| 3                                                                                                            |                                         |                                                |                         |                            |             |  |  |
| <u> </u>                                                                                                     |                                         |                                                |                         |                            |             |  |  |
| Zoom Fac                                                                                                     | tor: 50 X Zoo                           | m Position: 3.86 s                             |                         |                            |             |  |  |
|                                                                                                              | <b>a</b>                                | • • • • • • • • • • • • • • • • • • • •        | <b>b</b>                |                            |             |  |  |
|                                                                                                              | V V V V                                 | $\wedge$ $\wedge$ $\wedge$ $\wedge$ $\uparrow$ |                         | 7670 s 1.31<br>8668 s 21.2 |             |  |  |
| 4) . \. /. /                                                                                                 | \                                       | / -\-/- \ <i>J</i> : \-/-\-/_#                 | 111111                  |                            | .91 V       |  |  |
|                                                                                                              |                                         | 1                                              |                         |                            |             |  |  |
|                                                                                                              |                                         | !                                              |                         |                            |             |  |  |
| 3                                                                                                            |                                         | VVVV                                           |                         |                            |             |  |  |
|                                                                                                              | . i i                                   | <u> </u>                                       |                         | <u> </u>                   | <del></del> |  |  |
|                                                                                                              |                                         | İ İ                                            |                         |                            |             |  |  |
|                                                                                                              |                                         |                                                |                         |                            |             |  |  |
|                                                                                                              | 1.0 V<br>10 A <b>4</b> 500              | ∑ 40.0m                                        | ıs 250kS/s<br>5M points | 30.0 V                     |             |  |  |
|                                                                                                              | Value                                   | Mean Min                                       | Max                     | Std Dev                    |             |  |  |
| 4 Freq                                                                                                       | juency 52.01 Hz                         | 52.01 52.01<br>Trip time (1)                   |                         | 0.000                      |             |  |  |
| <b>Tek</b> PreVu                                                                                             |                                         | Trip time (10<br>M 400 s                       | oos seurig)             |                            |             |  |  |
| 4                                                                                                            |                                         | •                                              |                         | -6                         |             |  |  |
|                                                                                                              |                                         |                                                |                         |                            |             |  |  |
| 3                                                                                                            |                                         |                                                |                         |                            |             |  |  |
| <u> </u>                                                                                                     |                                         | B. W 4 00l                                     |                         |                            |             |  |  |
| Zoom Fac                                                                                                     | tor: 20 X Zoc                           | om Position: 1.62ks                            |                         |                            | · · · · ·   |  |  |
|                                                                                                              |                                         | <u> </u>                                       |                         | 5710ks 975.                | OmV         |  |  |
|                                                                                                              |                                         | İ                                              | <b>6</b> 1.             | 6680ks 21.1                | 19 V        |  |  |
| 4                                                                                                            |                                         | : · · · · · <del> </del>                       | Δ9                      | 7.000 s △20.               | .22 V       |  |  |
|                                                                                                              |                                         |                                                |                         |                            |             |  |  |
|                                                                                                              |                                         | <u> </u>                                       |                         |                            |             |  |  |
|                                                                                                              |                                         |                                                |                         |                            |             |  |  |
| 3                                                                                                            |                                         |                                                |                         |                            |             |  |  |
|                                                                                                              |                                         |                                                |                         |                            |             |  |  |
|                                                                                                              | <u> </u>                                | <u> </u>                                       |                         | [ <del>.</del>             |             |  |  |
|                                                                                                              | : : : : : : : : : : : : : : : : : : : : | Z 20.0 s                                       | 1.25kS/s                |                            |             |  |  |
|                                                                                                              | I.0 V<br>IO A <b>4</b> 500              |                                                | 1.25k5/s<br>5M points   | 0.00 V                     |             |  |  |
|                                                                                                              | Value                                   | Mean Min                                       | Max                     | Std Dev                    |             |  |  |
| (4) Freq                                                                                                     | juency 52.01 Hz                         | 52.01 52.01                                    | 52.01                   | 0.000                      |             |  |  |



| Table 4.9.3 Inter                                              | face protection                           |                                                           |                                                             |                                                           | Р                                                |  |  |
|----------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--|--|
| Overfrequency threshold stage 2 [81 > > ] Adjustment range Yes |                                           |                                                           |                                                             |                                                           |                                                  |  |  |
| Trip value Config. from 50.0 to 52.0Hz (0.1Hz steps)           |                                           |                                                           |                                                             |                                                           |                                                  |  |  |
| Trip time Config. from 0.1 to 5s (0.05s steps)                 |                                           |                                                           |                                                             |                                                           |                                                  |  |  |
| may be required                                                | d to have the abilit                      | y to activate and d                                       | eactivate a stage                                           |                                                           | No                                               |  |  |
| y an external siç                                              |                                           |                                                           |                                                             |                                                           |                                                  |  |  |
|                                                                | ips in the range fro<br>Iess than 20 % Un | m 0.2Un to 1.20Ur                                         | n.it is inhibited for                                       |                                                           | No                                               |  |  |
| Parameter                                                      | Settings                                  | Test 1                                                    | Test 2                                                      | Test 3                                                    | Limits                                           |  |  |
| rip value [Hz]                                                 | 52                                        | 52.02                                                     | 52.01                                                       | 52.00                                                     | 52.0±0.05                                        |  |  |
| rip time [ms]                                                  | 100                                       | 99.00                                                     | 96.43                                                       | 97.58                                                     | 100±10                                           |  |  |
| Parameter                                                      | Settings                                  | Test 1                                                    | Test 2                                                      | Test 3                                                    | Limits                                           |  |  |
| rip value [Hz]                                                 | 52.0                                      | 52.00                                                     | 52.01                                                       | 52.01                                                     | 52.0±0.05                                        |  |  |
| rip time [s]                                                   | 5                                         | 4.99                                                      | 4.98                                                        | 4.99                                                      | 5±0.05                                           |  |  |
| <b>Tek</b> Pre                                                 | Vii                                       | Trip time (0                                              |                                                             |                                                           |                                                  |  |  |
|                                                                | •                                         | 171 2100                                                  | 60                                                          |                                                           |                                                  |  |  |
| 4                                                              |                                           |                                                           |                                                             |                                                           |                                                  |  |  |
| 3                                                              |                                           |                                                           |                                                             |                                                           |                                                  |  |  |
| 17                                                             | Factors FO V                              | Zaam Dasitiant 2 FO a                                     |                                                             |                                                           |                                                  |  |  |
|                                                                | Factor: 50 X                              | Zoom Position: 3,50 s                                     | 6                                                           |                                                           | <u> </u>                                         |  |  |
| <u>.</u>                                                       | A 1 A 1 A 1 A 1 A                         |                                                           |                                                             | 278 s 1.322                                               |                                                  |  |  |
| <b>⊕</b>                                                       | /\.#\                                     | ./:\ / \ /:\ / \ /:                                       |                                                             | 5268 s 21.37 °<br>.000ms ∆20.05                           |                                                  |  |  |
|                                                                | V <sub>1</sub> V V <sub>1</sub> V         |                                                           | V V 1 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                 | .000ms <u>A20.03</u>                                      | 1                                                |  |  |
|                                                                |                                           |                                                           |                                                             |                                                           |                                                  |  |  |
|                                                                | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $  | $\Lambda   \Lambda \cap \Lambda   \Lambda   \Lambda  $    |                                                             |                                                           |                                                  |  |  |
| <b>~</b> ₩.                                                    | V- V- V- V- V                             | /- V - V - V - <del>I</del>                               | /.                                                          |                                                           |                                                  |  |  |
|                                                                |                                           |                                                           |                                                             |                                                           | <del></del>                                      |  |  |
| D.                                                             |                                           |                                                           |                                                             |                                                           |                                                  |  |  |
|                                                                | 20.0 V                                    | : : <u>:</u><br>                                          | : : : : : : : : : : : : : : : : : : :                       | <u> </u>                                                  |                                                  |  |  |
| 3                                                              | 100 A <b>4</b>                            | 500 V                                                     | 5M points                                                   | 30.0 V                                                    | <u> </u>                                         |  |  |
|                                                                | Value<br>Frequency 52.02 Hz               | Mean Min<br>52.02 52.02                                   | Max<br>52.02                                                | Std Dev<br>0.000                                          |                                                  |  |  |
|                                                                | Trequency 52.02 III                       | Trip time (                                               |                                                             | 0.000                                                     |                                                  |  |  |
| <b>Tek</b> Pre                                                 | Vu                                        | M 20.0                                                    | s                                                           | Г                                                         |                                                  |  |  |
| 4                                                              |                                           |                                                           |                                                             | 10                                                        |                                                  |  |  |
| 3                                                              |                                           |                                                           |                                                             |                                                           | <del>                                     </del> |  |  |
| <u></u>                                                        |                                           |                                                           |                                                             |                                                           |                                                  |  |  |
| Zoom                                                           | Factor: 20 X                              | Zoom Position: 87.4 s                                     |                                                             |                                                           |                                                  |  |  |
|                                                                | •                                         | •                                                         | 0.05                                                        | 000 0 0 510                                               | <del></del>                                      |  |  |
| 4                                                              |                                           | and the death of the first in the death of the            |                                                             | .026 s 2.516 '<br>.016 s 25.80 '                          |                                                  |  |  |
|                                                                |                                           | الخاصات فيخاضا خاصات فياخات                               | <u> </u>                                                    | 9900 s ∆23.28                                             | : V                                              |  |  |
| <u>.</u>                                                       |                                           |                                                           |                                                             |                                                           |                                                  |  |  |
| :<br>                                                          |                                           | NE INI (INI JAN JAN DILI DIE INI (INI JAN DEL DIE INI DIE | un fart falt må tred ner jær fart falt fra tred en sjær fær |                                                           |                                                  |  |  |
| 3>                                                             |                                           |                                                           |                                                             |                                                           |                                                  |  |  |
| <mark></mark>                                                  | <u> </u>                                  |                                                           | tarahan dalaman dalama                                      | <mark>uituli</mark> 1 i i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i |                                                  |  |  |
| <u> </u>                                                       |                                           |                                                           |                                                             | <u> </u>                                                  |                                                  |  |  |
| <u> 1</u>                                                      |                                           |                                                           |                                                             |                                                           |                                                  |  |  |
|                                                                | 50.0 V                                    |                                                           | : : : : : : : : : : : : : : : : : : :                       | 1 /                                                       | :                                                |  |  |
| 3                                                              |                                           | 500 V                                                     | 5M points                                                   | 0.00 V                                                    |                                                  |  |  |
|                                                                | Value<br>Frequency 52.00 Hz               | Mean Min<br>52.00 52.00                                   | Max<br>52.00                                                | Std Dev<br>0.000                                          |                                                  |  |  |




| 4.9.4 | Means to d                           | letect island situ                       | ation                                  |                                  |                  |                      |              |      | P            |
|-------|--------------------------------------|------------------------------------------|----------------------------------------|----------------------------------|------------------|----------------------|--------------|------|--------------|
| No.   | PEUT <sup>1)</sup> (% of EUT rating) | Reactive load<br>(% of QL in<br>6.1.d)1) | PAC <sup>2)</sup><br>(% of<br>nominal) | QAC <sup>3)</sup> (% of nominal) | Run on time (ms) | P <sub>EUT</sub> (W) | Actual<br>Qf | V DC | Remarks 4)   |
| 1.    | 100                                  | 100                                      | 0                                      | 0                                | 254.0            | 60000                | 1.00         | 785  | Test A at BL |
| 2.    | 66                                   | 66                                       | 0                                      | 0                                | 559.0            | 39600                | 1.00         | 690  | Test B at BL |
| 3.    | 33                                   | 33                                       | 0                                      | 0                                | 532.0            | 19800                | 1.00         | 576  | Test C at BL |
| 4.    | 100                                  | 100                                      | -5                                     | -5                               | 181.0            | 60000                | 0.98         | 785  | Test A at IB |
| 5.    | 100                                  | 100                                      | -5                                     | 0                                | 201.0            | 60000                | 1.00         | 785  | Test A at IB |
| 6.    | 100                                  | 100                                      | -5                                     | 5                                | 210.0            | 60000                | 1.02         | 785  | Test A at IB |
| 7.    | 100                                  | 100                                      | 0                                      | -5                               | 243.0            | 60000                | 0.98         | 785  | Test A at IB |
| 8.    | 100                                  | 100                                      | 0                                      | 5                                | 230.0            | 60000                | 1.00         | 785  | Test A at IB |
| 9.    | 100                                  | 100                                      | 5                                      | -5                               | 202.0            | 60000                | 0.96         | 785  | Test A at IB |
| 10.   | 100                                  | 100                                      | 5                                      | 0                                | 192.0            | 60000                | 0.97         | 785  | Test A at IB |
| 11.   | 100                                  | 100                                      | 5                                      | 5                                | 171.0            | 60000                | 1.00         | 785  | Test A at IB |
| 12.   | 66                                   | 66                                       | 0                                      | -5                               | 207.6            | 39600                | 0.97         | 690  | Test B at IB |
| 13.   | 66                                   | 66                                       | 0                                      | -4                               | 212.8            | 39600                | 0.98         | 690  | Test B at IB |
| 14.   | 66                                   | 66                                       | 0                                      | -3                               | 220.4            | 39600                | 0.98         | 690  | Test B at IB |
| 15.   | 66                                   | 66                                       | 0                                      | -2                               | 246.0            | 39600                | 0.99         | 690  | Test B at IB |
| 16.   | 66                                   | 66                                       | 0                                      | -1                               | 331.0            | 39600                | 0.99         | 690  | Test B at IB |
| 17.   | 66                                   | 66                                       | 0                                      | 1                                | 371.0            | 39600                | 0.99         | 690  | Test B at IB |
| 18.   | 66                                   | 66                                       | 0                                      | 2                                | 297.6            | 39600                | 1.00         | 690  | Test B at IB |
| 19.   | 66                                   | 66                                       | 0                                      | 3                                | 227.6            | 39600                | 0.99         | 690  | Test B at IB |
| 20.   | 66                                   | 66                                       | 0                                      | 4                                | 213.6            | 39600                | 1.02         | 690  | Test B at IB |
| 21.   | 66                                   | 66                                       | 0                                      | 5                                | 199.2            | 39600                | 1.01         | 690  | Test B at IB |
| 22.   | 33                                   | 33                                       | 0                                      | -5                               | 205.6            | 19800                | 0.96         | 576  | Test C at IB |
| 23.   | 33                                   | 33                                       | 0                                      | -4                               | 207.2            | 19800                | 0.97         | 576  | Test C at IB |
| 24.   | 33                                   | 33                                       | 0                                      | -3                               | 226.0            | 19800                | 0.98         | 576  | Test C at IB |
| 25.   | 33                                   | 33                                       | 0                                      | -2                               | 290.4            | 19800                | 0.99         | 576  | Test C at IB |
| 26.   | 33                                   | 33                                       | 0                                      | -1                               | 359.0            | 19800                | 0.98         | 576  | Test C at IB |
| 27.   | 33                                   | 33                                       | 0                                      | 1                                | 308.0            | 19800                | 0.99         | 576  | Test C at IB |
| 28.   | 33                                   | 33                                       | 0                                      | 2                                | 242.4            | 19800                | 0.99         | 576  | Test C at IB |
| 29.   | 33                                   | 33                                       | 0                                      | 3                                | 216.0            | 19800                | 1.00         | 576  | Test C at IB |
| 30.   | 33                                   | 33                                       | 0                                      | 4                                | 206.0            | 19800                | 1.01         | 576  | Test C at IB |
| 31.   | 33                                   | 33                                       | 0                                      | 5                                | 190.8            | 19800                | 1.02         | 576  | Test C at IB |

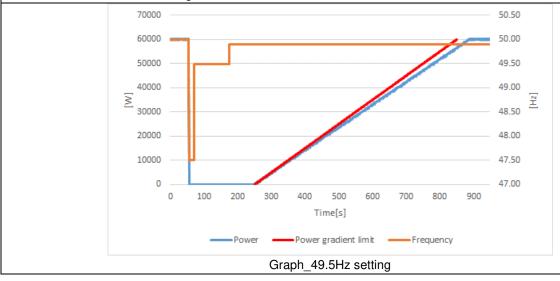

## Remark:

- 1) PEUT: EUT output power
- 2) PAC: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.
- 3) QAC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.
- 4) BL: Balance condition, IB: Imbalance condition.

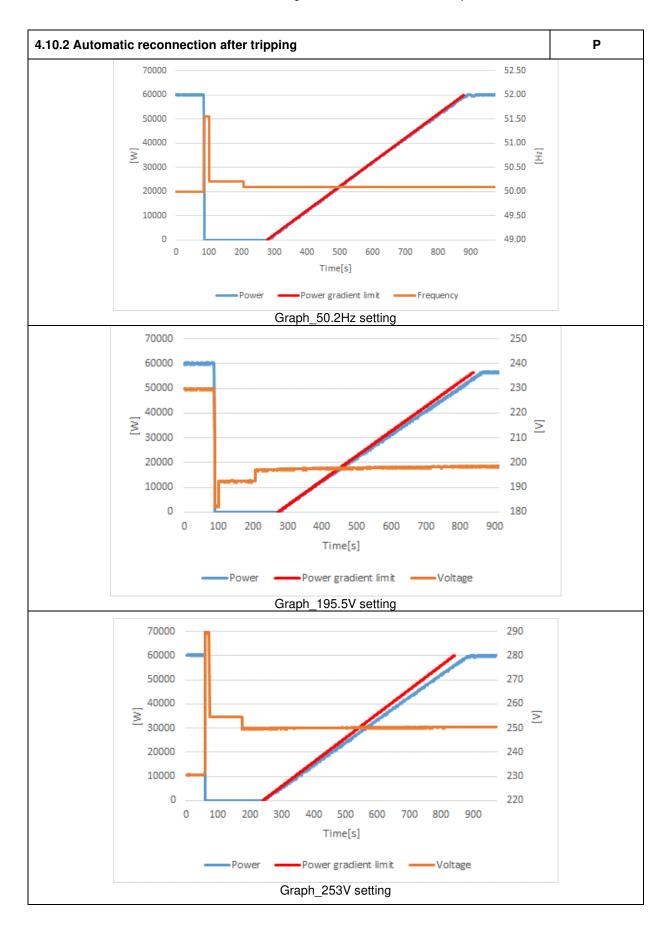




Page 73 of 87







| 4.10.2 Automatic reconnection after | Р               |          |  |
|-------------------------------------|-----------------|----------|--|
| Parameter                           |                 |          |  |
| Lower frequency                     | 47,0Hz – 50,0Hz | 49,5Hz   |  |
| Upper frequency                     | 50,0Hz – 52,0Hz | 50,2Hz   |  |
| Lower voltage                       | 50% - 100%Un    | 85 % Un  |  |
| Upper voltage                       | 100% – 120% Un  | 110 % Un |  |
| Observation time                    | 10s – 600s      | 60s      |  |
| Active power increase gradient      | 6% – 3000%/min  | 10%/min  |  |

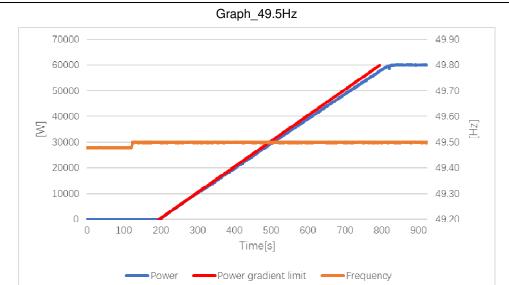
|               |            |            |                  | Power          |
|---------------|------------|------------|------------------|----------------|
| Test sequence | connection | connection | Observation time | gradient after |
| after trip    | Connection | allowed    | (s)              | Connection     |
|               |            |            |                  | (%/min)        |
| Step a)       | <49.5Hz    | No         |                  |                |
| Step b)       | ≥49.5Hz    | Yes        | 74.0             | 9.42           |
| Step c)       | >50.2Hz    | No         |                  |                |
| Step d)       | ≤50.2Hz    | Yes        | 71.0             | 9.79           |
| Step e)       | <195.5V    | No         |                  |                |
| Step f)       | ≥195.5V    | Yes        | 64.5             | 9.56           |
| Step g)       | >253V      | No         |                  |                |
| Step h)       | ≤253V      | Yes        | 65.0             | 9.33           |

Remark: Tested at default setting.





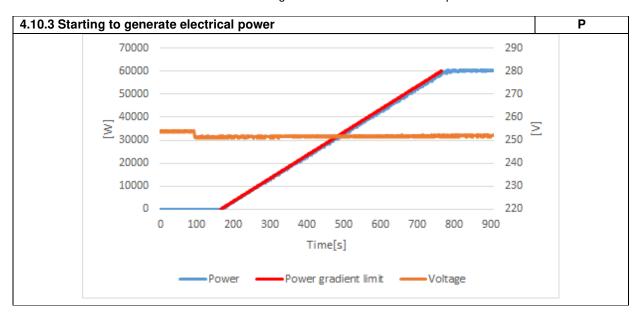





| 0.3 Starting to generate electri | cal power                       | <u> </u> | Р |  |  |  |
|----------------------------------|---------------------------------|----------|---|--|--|--|
| Parameter                        | Parameter Range Default setting |          |   |  |  |  |
| Lower frequency                  | 47,0Hz - 50,0Hz                 | 49,5Hz   |   |  |  |  |
| Upper frequency                  | 50,0Hz - 52,0Hz                 | 50,1Hz   |   |  |  |  |
| Lower voltage                    | 50% – 100% Un                   | 85 % Un  |   |  |  |  |
| Upper voltage                    | 100% – 120% Un                  | 110 % Un |   |  |  |  |
| Observation time                 | 10s - 600s                      | 60s      |   |  |  |  |
| Active power increase grad       | dient 6% – 3000%/min            | disabled |   |  |  |  |

| Test r | esult: |
|--------|--------|
|--------|--------|

| Test sequence at normal operation starting | connection | connection<br>allowed | Observation time (s) | Power<br>gradient after<br>Connection<br>(%/min) |
|--------------------------------------------|------------|-----------------------|----------------------|--------------------------------------------------|
| Step a)                                    | <49.5Hz    | No                    |                      |                                                  |
| Step b)                                    | ≥49.5Hz    | Yes                   | 72.5                 | 9.54                                             |
| Step c)                                    | >50.1Hz    | No                    |                      |                                                  |
| Step d)                                    | ≤50.1Hz    | Yes                   | 69.5                 | 9.60                                             |
| Step e)                                    | <195.5V    | No                    |                      |                                                  |
| Step f)                                    | ≥195.5V    | Yes                   | 60.0                 | 9.74                                             |
| Step g)                                    | >253V      | No                    |                      |                                                  |
| Step h)                                    | ≤253V      | Yes                   | 71.5                 | 9.73                                             |


Remark: Tested at default setting.







#### Page 79 of 87





| tring     | 4 U <sub>DC</sub> =                              |                                                         | at and ceasing active 620 Vdc Uac = Un                       |                                                   | ace) P<br>Emax (KW) 60 |
|-----------|--------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|------------------------|
|           | ean value P/Pn                                   | setpoint (%)                                            | Pmeasured (%)                                                | △Pmeasured (%                                     | - ,                    |
| 100%      |                                                  | 100.71%                                                 | 0.71%                                                        | ±5%                                               |                        |
| 90%       |                                                  |                                                         | 91.38%                                                       | 1.38%                                             | ±5%                    |
|           |                                                  |                                                         | 81.36%                                                       | 1.36%                                             | ±5%                    |
|           | 70%                                              |                                                         | 71.23%                                                       | 1.23%                                             | ±5%                    |
|           | 60%                                              |                                                         | 61.18% 1.18%                                                 |                                                   | ±5%                    |
|           | 50%                                              |                                                         | 50.84%                                                       | 0.84%                                             | ±5%                    |
|           | 40%                                              |                                                         | 40.76%                                                       | 0.76%                                             | ±5%                    |
|           | 30%                                              |                                                         | 30.84%                                                       | 0.84%                                             | ±5%                    |
|           | 20%                                              |                                                         | 20.92%                                                       | 0.92%                                             | ±5%                    |
|           | 10%                                              |                                                         | 10.79%                                                       | 0.79%                                             | ±5%                    |
|           | 0%                                               |                                                         | 1.12%                                                        | 1.12%                                             | ±5%                    |
| The power | gradient for inci                                | reasing and re                                          |                                                              | 1 12                                              | 0.48%Pn/s              |
|           | ogic interface (at                               |                                                         |                                                              |                                                   | 2.024s                 |
|           | 0.00%                                            | ) 200                                                   | 400 600 800                                                  | 0 1000 1200                                       | 1400                   |
|           |                                                  |                                                         | Time[s]                                                      |                                                   | 2.55                   |
|           |                                                  | Pov                                                     | wer ••••• Limit up •                                         | · · · · Limit low                                 |                        |
|           | <b>Tek</b> PreVu<br>₄                            |                                                         | M 2.00 s                                                     | а Б                                               |                        |
|           | 3                                                |                                                         |                                                              |                                                   |                        |
|           |                                                  | E.V.                                                    | D - W 4 4 C                                                  |                                                   |                        |
|           | Zoom Factor:                                     | 5 X Zoom                                                | Position: 4.16 s                                             | 6                                                 |                        |
|           |                                                  | anamarandhanaladhalla<br>dixinaladhalladhalladhalla<br> | papapapapapapapapapapapapapapapapapapa                       | 3.118 s 4.052<br>5.142 s 157.8r<br>Δ2.024 s Δ3.89 | nV                     |
|           | TOATHATDATHATHATHATHATHATHATHATHATHATHATHATHATHA | ATTACTIACTIACTIACTIACTIACTIACTIACTIACTIA                | papapapapapapapa<br>Dabahahahahahahahahahahahahahahahahahaha | UMDADADA<br>Ondododon                             |                        |
|           | 3                                                | UNUNUNUNUNUNUNUNUNUN                                    |                                                              |                                                   |                        |
|           |                                                  |                                                         |                                                              |                                                   |                        |
|           | 3 hddddd                                         | +                                                       |                                                              | 0kS/s <b>1</b> /                                  |                        |



| 4.13 | .13 TABLE: Single fault tolerance P |                |                                                           |          |                                                                                 |        |
|------|-------------------------------------|----------------|-----------------------------------------------------------|----------|---------------------------------------------------------------------------------|--------|
| No   | Component name                      | Componen t No. | Fault point                                               | Duration | Result                                                                          |        |
| 1.   | ISO Relay                           | K1             | Short circuit before start up inverter                    | 3min     | Unit can't operating, error ma<br>Iso Fault.<br>No danger ,no hazard ,no        | -      |
| 2.   | Monitoring<br>Relay - L1            | RL3            | Pin1 to Pin2<br>short circuit before<br>start up inverter | 3min     | Unit can't operating, error ma<br>Grid Relay Fault.<br>No danger ,no hazard ,no | ssage: |
| 3.   | Monitoring<br>Relay - L1            | RL3            | Pin3 to Pin4<br>short circuit before<br>start up inverter | 3min     | Unit can't operating, error ma<br>Grid Relay Fault.<br>No danger ,no hazard ,no |        |
| 4.   | Monitoring<br>Relay - L1            | RL9            | Pin1 to Pin2<br>short circuit before<br>start up inverter | 3min     | Unit can't operating, error ma<br>Grid Relay Fault.<br>No danger ,no hazard ,no | ssage: |
| 5.   | Monitoring<br>Relay - L1            | RL9            | Pin3 to Pin4<br>short circuit before<br>start up inverter | 3min     | Unit can't operating, error ma<br>Grid Relay Fault.<br>No danger ,no hazard ,no | ssage: |
| 6.   | Monitoring<br>Relay - L2            | RL2            | Pin1 to Pin2<br>short circuit before<br>start up inverter | 3min     | Unit can't operating, error ma<br>Grid Relay Fault.<br>No danger ,no hazard ,no |        |
| 7.   | Monitoring<br>Relay - L2            | RL2            | Pin3 to Pin4<br>short circuit before<br>start up inverter | 3min     | Unit can't operating, error ma<br>Grid Relay Fault.<br>No danger ,no hazard ,no | -      |
| 8.   | Monitoring<br>Relay - L2            | RL8            | Pin1 to Pin2<br>short circuit before<br>start up inverter | 3min     | Unit can't operating, error ma<br>Grid Relay Fault.<br>No danger ,no hazard ,no | ssage: |
| 9.   | Monitoring<br>Relay - L2            | RL8            | Pin3 to Pin4<br>short circuit before<br>start up inverter | 3min     | Unit can't operating, error ma<br>Grid Relay Fault.<br>No danger ,no hazard ,no | ssage: |
| 10.  | Monitoring<br>Relay - L3            | RL1            | Pin1 to Pin2<br>short circuit before<br>start up inverter | 3min     | Unit can't operating, error ma<br>Grid Relay Fault.<br>No danger ,no hazard ,no | ssage: |
| 11.  | Monitoring<br>Relay - L3            | RL1            | Pin3 to Pin4<br>short circuit before<br>start up inverter | 3min     | Unit can't operating, error ma<br>Grid Relay Fault.<br>No danger ,no hazard ,no | ssage: |
| 12.  | Monitoring<br>Relay - L3            | RL7            | Pin1 to Pin2<br>short circuit before<br>start up inverter | 3min     | Unit can't operating, error ma<br>Grid Relay Fault.<br>No danger ,no hazard ,no | ssage: |
| 13.  | Monitoring<br>Relay - L3            | RL7            | Pin3 to Pin4<br>short circuit before<br>start up inverter | 3min     | Unit can't operating, error ma<br>Grid Relay Fault.<br>No danger ,no hazard ,no | ssage: |
| 14.  | AC voltage<br>measure1              | R777           | Pin1-Pin2<br>Short circuit                                | 3min     | Unit shut down, Error messa<br>Grid Volt Fault.<br>no danger ,no hazard ,no     | age:   |
| 15.  | AC voltage measure1                 | R783           | Pin1-Pin2<br>Open circuit                                 | 3min     | Unit shut down, Error messa<br>Grid Volt Fault.<br>no danger ,no hazard ,no     | age:   |
| 16.  | AC voltage measure2                 | R784           | Pin1-Pin2<br>Short circuit                                | 3min     | Unit shut down, Error messa<br>Grid Volt Fault.<br>no danger ,no hazard ,no     | age:   |
| 17.  | AC voltage<br>measure2              | R790           | Pin1-Pin2<br>Open circuit                                 | 3min     | Unit shut down, Error messa<br>Grid Volt Fault.<br>no danger ,no hazard ,no     | age:   |
| 18.  | AC voltage<br>measure3              | R791           | Pin1-Pin2<br>Short circuit                                | 3min     | Unit shut down, Error messa<br>Grid Volt Fault.<br>no danger ,no hazard ,no     | age:   |

TRF originator: Intertek Shanghai



| 19. | AC voltage<br>measure3        | R797 | Pin1-Pin2<br>Open circuit                     | 3min | Unit shut down, Error message: Grid Volt Fault. no danger ,no hazard ,no fires               |
|-----|-------------------------------|------|-----------------------------------------------|------|----------------------------------------------------------------------------------------------|
| 20. | AC current measure1           | R571 | Pin1-Pin2<br>Short circuit                    | 3min | Unit can't operating, error message: Inv Over Current. No damage ,no hazard ,no fire.        |
| 21. | AC current measure2           | R581 | Pin1-Pin2<br>Short circuit                    | 3min | Unit can't operating, error message: Inv Over Current. No damage ,no hazard ,no fire.        |
| 22. | AC current measure3           | R593 | Pin1-Pin2<br>Short circuit                    | 3min | Unit can't operating, error message: Inv Over Current. No damage ,no hazard ,no fire.        |
| 23. | AC frequency measure          | R555 | Pin1-Pin2<br>Open circuit                     | 3min | Unit shut down, error message:<br>Grid Freq Fault.<br>No damage ,no hazard ,no fire          |
| 24. | V-bus<br>measure              | R492 | Pin1-Pin2<br>Short circuit                    | 3min | Unit shut down ,error massage:<br>BusAllVoltHwOveFault.<br>No damage ,no hazard ,no fire     |
| 25. | V-bus<br>measure              | R100 | Pin1-Pin2<br>Short circuit                    | 3min | Unit can't start up<br>No damage ,no hazard ,no fire                                         |
| 26. | DC current<br>measure         | U26  | Pin1-Pin2<br>Short circuit                    | 3min | Unit shut down,error message: PV1HwoVerCurrFault. no danger ,no hazard ,no fires             |
| 27. | Bus cap                       | C41  | Pin1-Pin2<br>Short circuit before<br>start up | 3min | Unit can not start up,<br>No damage, no hazard, no fire.                                     |
| 28. | COM-of CPU1-<br>CPU2          | C258 | Pin 172<br>Open circuit                       | 3min | Unit shut down. error message:<br>Slave Com Waring.<br>No damage, no hazard, no fire.        |
| 29. | CPU1 Failure<br>-Power        | R159 | Pin 1-Pin2<br>Short circuit                   | 3min | Unit shut down.<br>No damage ,no hazard ,no fire                                             |
| 30. | T measure                     | U7   | Pin1-Pin2<br>Short circuit                    | 3min | Unit can't operating, Error massage: CoolingTemAdChanWarning. No damage, no hazard, no fire. |
| 31. | Insulation impedance measure  | Q2   | Pin1-Pin2<br>Short circuit                    | 3min | Unit can't operating,Error massage:<br>Iso Err.<br>No damage, no hazard, no fire.            |
| 32. | Drive<br>optocoupler          | Q2   | Pin1-Pin2<br>Short circuit before<br>start up | 3min | Unit can not start up,<br>No damage, no hazard, no fire.                                     |
| 33. | power tube<br>Boost           | Q2   | Pin1-Pin2<br>Short circuit before<br>start up | 3min | Unit can not start up,<br>No damage, no hazard, no fire.                                     |
| 34. | power tube<br>Boost           | D20  | Pin1-Pin3<br>Short circuit before<br>start up | 3min | Unit can not start up,<br>No damage, no hazard, no fire.                                     |
| 35. | power tube<br>Boost           | TQ6  | Pin2-Pin3<br>Short circuit before<br>start up | 3min | Unit can not start up,<br>No damage, no hazard, no fire.                                     |
| 36. | Diode                         | U26  | Short circuit                                 | 3min | Unit normal operation,<br>No danger ,no hazard ,no fires                                     |
| 37. | power tube<br>IGBT - inverter | C41  | Pin1-Pin2<br>Short circuit before<br>start up | 3min | Unit can't start ,error message:<br>Hardware Fault,<br>No damage ,no hazard ,no fire         |
| 38. | power tube<br>IGBT - inverter | TQ6  | Pin1-Pin3<br>Short circuit before<br>start up | 3min | Unit can't start ,error message:<br>Hardware Fault,<br>No damage ,no hazard ,no fire         |
| 39. | GFCI check                    | R553 | Short circuit                                 | 3min | Unit shut down, error message:<br>GFCI Fault.<br>No damage ,no hazard ,no fire               |



|     | Power                                          |    | Pin10-Pin11                                      |        | Unit can not start up,                                                                    |
|-----|------------------------------------------------|----|--------------------------------------------------|--------|-------------------------------------------------------------------------------------------|
| 40. | supply<br>+20V                                 | T1 | Short circuit before start up                    | 3min   | No damage, no hazard, no fire.                                                            |
| 41. | Power<br>supply<br>+8V                         | T1 | Pin25-Pin26<br>Short circuit before<br>start up  | 3min   | Unit can not start up,<br>No damage, no hazard, no fire.                                  |
| 42. | Power<br>supply<br>+12V                        | T1 | Pin27-Pin29<br>Short circuit before<br>start up  | 3min   | Unit can not start up,<br>No damage, no hazard, no fire.                                  |
| 43. | Power<br>supply<br>+12V                        | T1 | Pin132-Pin34<br>Short circuit before<br>start up | 3min   | Unit can not start up,<br>No damage, no hazard, no fire.                                  |
| 44. | power tube<br>MOS-SPS                          | Q3 | G-D<br>Short circuit                             | 3min   | SPS no output, no danger ,no hazard ,no fires                                             |
| 45. | Output L1 to N                                 |    | short circuit                                    | 3min   | Unit shut down ,error message:<br>Grid Volt Fault.<br>No damage ,no hazard ,no fire       |
| 46. | Output L1 to L2                                |    | short circuit                                    | 3min   | Unit shut down ,error message:<br>Grid Volt Fault.<br>No damage ,no hazard ,no fire       |
| 47. | Output L to PE                                 |    | short circuit                                    | 3min   | Unit shut down ,error message:<br>Grid Volt Fault.<br>No damage ,no hazard ,no fire       |
| 48. | Output N to PE                                 |    | short circuit                                    | 3min   | Unit shut down ,error message:<br>Grid Volt Fault.<br>No damage ,no hazard ,no fire       |
| 49. | Overload                                       |    | Output overload<br>(110%)                        | 30 min | Unit normal operation,<br>No damage ,no hazard ,no fire                                   |
| 50. | Cooling system<br>failure –<br>Blanketing test |    | Put the unit to box                              | 2Hour  | 1 hour power run at 80%                                                                   |
| 51. | PV+ to PV-                                     |    | Reverse polarity                                 | 3min   | Unit can not start up,<br>no danger ,no hazard ,no fires                                  |
| 52. | Output L - N                                   |    | Reverse polarity before start up                 | 3min   | Unit normal operation.<br>No damage, no hazard, no fire.                                  |
| 53. | Output L1 - N                                  |    | Reverse polarity before start up                 | 3min   | Unit can't operating, error message:<br>Grid Volt Fault.<br>No damage ,no hazard ,no fire |
| 54. | Output L1 - L2                                 |    | Reverse polarity before start up                 | 3min   | Unit normal operation.<br>No damage, no hazard, no fire.                                  |

#### Remarks:

Abbreviations APS:auxiliary power supply, EM: error message

, EUT: equipment under test, SC short circuit, OP: open circuit, O/L: Overloaded

EUT shut down: EUT not connect to Grid ,cease to export power to Grid, the relay is opened.

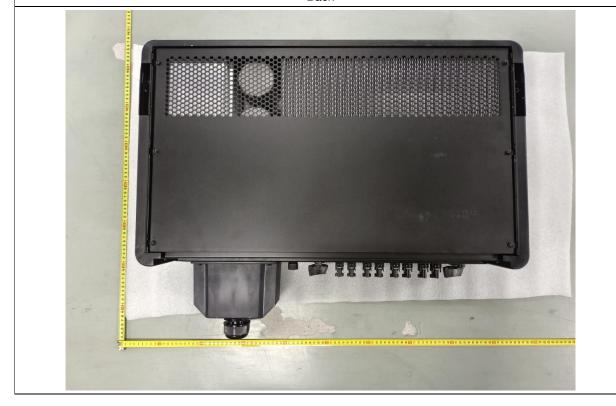
EUT standby: EUT connect to Grid ,cease to export power to Grid, the relay is closed.

#### During the test:

Fire can not propagates beyond the EUT;

Equipment shall not emitt molten metal;

Enclosures shall not deform to cause non-compliance with the standard.


Dielectric test is made on RI and BI between Pri. circuit and protective earthing terminal after the test.

No Backfeed voltage on the test

