

TEST REPORT Engineering Recommendation EN 50549-1:2019 Requirements for the connection of generation equipment in parallel with public distribution networks

Report Reference No.	2308A0284SHA-001 [39ac Chen
Tested by (name + signature):	
Approved by (name + signature):	Sleif Sui
Date of issue:	2023-09-25
Contents	83 pages
Testing Laboratory	Intertek Testing Services Shanghai.
Address:	Building No.86, 1198 Qinzhou Road (North), Shanghai 200233, China.
Testing location / address:	Same as above
Applicant's name	Elmark Industries SC
Address	2 Dobrudzha blvd. , 9300, Dobrich, Bulgaria
Test specification:	
Standard:	EN 50549-1:2019 Requirements for the connection of generation equipment in parallel with public distribution networks.
Test procedure	testing
Non-standard test method:	N/A
Test Report Form/blank test report	
Test Report Form No	TTRF_50549-1
TRF Originator	Intertek Shanghai
Master TRF	2019-11
copyright owner and source of the material. In	or in part for non-commercial purpose as long as Intertek is acknowledged as ntertek takes no responsibility and will not assume liability for damages resulting uced material due to its placement and context.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Test item description:	
Trade Mark:	ELMARK
Manufacturer:	Same as applicant
Model/Type reference::	ELM3PON003K, ELM3PON004K, ELM3PON005K, ELM3PON006K, ELM3PON008K, ELM3PON010K, ELM3PON012K, ELM3PON013K, ELM3PON015K, ELM3PON017K, ELM3PON020K, ELM3PON025K
Rating:	See below Specifications table

Specifications table					
Model	ELM3PON003K	ELM3PON004K	ELM3PON005K	ELM3PON006K	
PV input					
P pv Max(W)	5100	6000	7500	9000	
Vmax PV (Vdc) (absolute Max.)	1100	1100	1100	1100	
Isc PV (absolute Max.) (A)	25 x 2	25 x 2	25 x 2	25 x 2	
Number MPP trackers	2	2	2	2	
Number input strings	1/1	1/1	1/1	1/1	
Max. PV input current (A)	15 x 2	15 x 2	15 x 2	15 x 2	
MPPT voltage range (Vdc)	150-1000	150-1000	150-1000	150-1000	
Vdc range @ full power (Vdc)	200-850	200-850	200-850	250-850	
AC Grid (output)					
Normal AC Voltage (VAC)	(VAC) 3P+N+PE/3P+PE 230/400				
Frequency (Hz)		50			
Normal AC Current (A)	4.4	5.8	7.3	8.7	
Max. cont. output current (A)	5.3	7	8.5	10.5	
Normal Power (W)	3000	4000	5000	6000	
Rated Apparent Power (VA)	3000	4000	5000	6000	
Max. cont. Power (W)	3000	4000	5000	6000	
Max. cont. Apparent Power (VA)	3000	4000	5000	6000	
Power factor(adjustable)		1.0(-0.8	8~ +0.8)		
Others					
Protective class		Cla	ss I		
Ingress protection (IP)		IP	65		
Temperature (℃)		-25℃ to +60℃	(Derating 45℃)		
Inverter Isolation	Non-isolated				
Overvoltage category	OVC III (AC Main), OVC II (PV)				
Software version		DSP:V06 CPL	D:V06 HMI:V06		

Specifications table						
Model	ELM3PON008K	ELM3PON010K	ELM3PON012K	ELM3PON013K		
PV input						
P pv Max(W)	12000	15000	18000	19500		
Vmax PV (Vdc) (absolute Max.)	1100	1100	1100	1100		
Isc PV (absolute Max.) (A)	25 x 2	25 x 2	25 x 2	25 x 2		
Number MPP trackers	2	2	2	2		
Number input strings	1/1	1/1	1/1	1/1		
Max. PV input current (A)	15 x 2	15 x 2	15 x 2	15 x 2		
MPPT voltage range (Vdc)	150-1000	150-1000	150-1000	150-1000		
Vdc range @ full power (Vdc)						
AC Grid (output)						
Normal AC Voltage (VAC)	3P+N+PE/3P+PE 230/400					
Frequency (Hz)	50					
Normal AC Current (A)	11.6	14.5	17.4	18.9		
Max. cont. output current (A)	13.5	17	21.5	22		
Normal Power (W)	8000	10000	12000	13000		
Rated Apparent Power (VA)	8000	10000	12000	13000		
Max. cont. Power (W)	8000	10000	12000	13000		
Max. cont. Apparent Power (VA)	8000	10000	12000	13000		
Power factor(adjustable)		1.0(-0.8	8~ +0.8)			
Others						
Protective class		Cla	ss l			
Ingress protection (IP)		IP	65			
Temperature (°C)		-25℃ to +60℃ (Derating 45℃)				
Inverter Isolation		Non-is	solated			
Overvoltage category		OVC III (AC Ma	uin), OVC II (PV)			
Software version		DSP:V06 CPL	D:V06 HMI:V06			

Specifications table								
Model	ELM3PON015K	ELM3PON017K	ELM3PON020K	ELM3PON025K				
PV input								
P pv Max(W)	22500	25500	30000	37500				
Vmax PV (Vdc) (absolute Max.)	1100	1100	1100	1100				
Isc PV (absolute Max.) (A)	30 + 48	48 x 2	48 x 2	48 x 2				
Number MPP trackers	2	2	2	2				
Number input strings	1/2	2/2	2/2	2/2				
Max. PV input current (A)	20 + 32	32 x 2	32 x 2	32 x 2				
MPPT voltage range (Vdc)	150-1000	150-1000	150-1000	150-1000				
Vdc range @ full power (Vdc)	(Vdc) 500-850 500-850 500-850 50							
AC Grid (output)								
Normal AC Voltage (VAC)		3P+N+PE/3P+PE 230/400						
Frequency (Hz)		50						
Normal AC Current (A)	21.8	24.7	29	36.3				
Max. cont. output current (A)	27	30	32	40				
Normal Power (W)	15000	17000	20000	25000				
Rated Apparent Power (VA)	15000	17000	20000	25000				
Max. cont. Power (W)	15000	17000	20000	25000				
Max. cont. Apparent Power (VA)	15000	17000	20000	25000				
Power factor(adjustable)		1.0(-0.8	8~ +0.8)					
Others								
Protective class		Cla	iss I					
Ingress protection (IP)		IP65						
Temperature (°C)		-25℃ to +60℃ (Derating 45℃)						
Inverter Isolation		Non-isolated						
Overvoltage category		OVC III (AC Main), OVC II (PV)						
Software version		DSP:V06 CPL	D:V06 HMI:V06					

ests perfo	rmed (name of test and test clause):	Testing location:
EN 50549-1	Test Description	Building No.86, 1198 Qinzhou
4.4.2	Operating frequency range	Road (North), Shanghai
4.4.3	Minimal requirements for active power delivery at underfrequency	200233, China
4.4.4	Continuous voltage operation range	
4.5.2	Rate of change of frequency (ROCOF)	
4.5.3	UVRT	
4.5.4	OVRT	
4.6.1	Power response to over frequency	
4.7.2.2	Q Capabilites (Power Factor) & Q(U) Capabilities	
4.7.2.3.3	Q Control. Voltage related control mode	
4.7.2.3.4	Q Control Power related control modes	
4.7.3	Voltage control by active power	
4.7.4	Zero current mode	
4.9.3	Interface protection	
4.9.4.	Islanding	
4.10.2	Reconnection after tripping	
4.10.3	Starting to generate electrical power	
4.11	Active power reduction by setpoint and Ceasing active power (Logic interface)	
4.13	Single fault tolerance of interface protection and interface switch	
Remark:		
or all clause	es, the model ELM3PON025K is type tested.	

Page 6 of 83

Test item particulars	
Temperature range	-25°C ~60°C
IP protection class	IP 65
Possible test case verdicts:	
- test case does not apply to the test object:	N/A
- test object does meet the requirement	P(Pass)
- test object does not meet the requirement:	F(Fail)
Testing	
Date of receipt of test item:	2023-08-05
Date (s) of performance of tests:	2023-08-05 to 2023-09-25

General remarks:

The test results presented in this report are only to the object (single power inverter unit) tested and base on Low Voltage connected on small power station.

Installer and relevant persons shall comply with EN 50549-1:2019, Local code and Grid Code in EN 50549-1:2019.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

"(see Enclosure #)" refers to additional information appended to the report. "(see appended table)" refers to a table appended to the report. Throughout this report a point is used as the decimal separator.

Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.

Determination of the test result includes consideration of measurement uncertainty from the test equipment and methods.

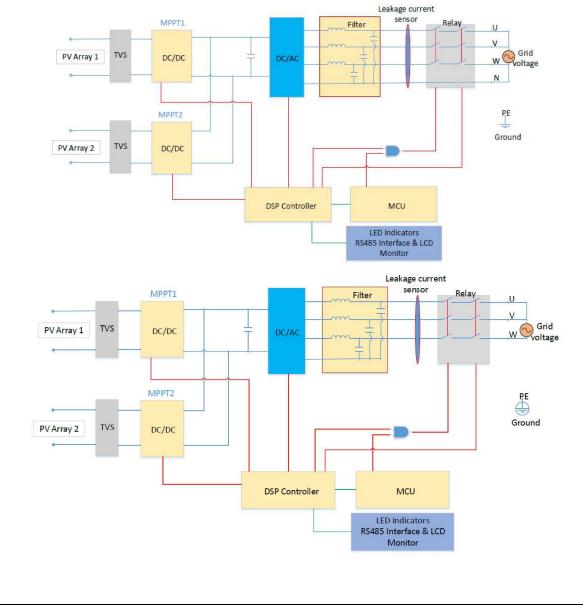
The test results presented in this report relate only to the item tested. The results indicate that the specimen partially complies with standard" EN 50549-1:2019". See general product information next for details information.

Factory information: Afore New Energy Technology (Shanghai) Co., Ltd. Building 7, No.333 Wanfang Rd, Minhang District, Shanghai. China. 201112

General product information:

The testing item is a grid-connected type inverter for indoor or outdoor installation.

The Inverter is three-phase type and non-isolated between input and output.


Power controlled by software because output power is different.

The value of fixed Q in experiment 4.7.2 shall be declared by the manufacturer with the range of 0-50%.

The model ELM3PON025K is as the representative test models in this report.

Password protection is for parameter seeing, and not available for operaters.

The topology diagram as following:

Copy of marking plate:

The artwork below may be only a draft. The use of certification marks on a product must be authorized by the respective certification body that own these marks.

	1	~ 1	1	0
5100	6000	7500	9000	12000
1	-			-
2000	- 4000	010	1.1	8000
Internet (1)	1 Harris	10000000	100000	13.5
		week with		
012	013	015	017	020
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
18000	19500	22500	25500	30000
		. 11	00	
		:150 .	1000	
15 × 2	15x2	20+32	32 x 2	32 x 2
25)	×2	30+48		48 x 2
12000	13000	15000	17000	20000
21.5			110.00	32
Ϋ́	3P+N+			10 ×
	20	50.00		100
		A CONTRACTOR OF A CONTRACTOR A		(u)
	-25			5°C)
		IP	65	
/ i i i	то	6187-01		
	18000 15×2 25: 12000 21.5	5.3 7 3P+N+ 012 013 18000 19500 15×2 15×2 25×2 12000 13000 21.5 22 3P+N+ 1 1 -25-	150- 15 3000 4000 5000 5.3 7 8.5 30°- 30°- 30°- 18 30°- 30°- 18000 19500 22500 18000 19500 22500 11 1500 25×2 25×2 30°48 12000 12000 13000 15000 21.5 22 27 30°+N+PE / 30°4 500 1 (-0.8+0.6 50 -25 - +6011(0 10 -25 - +6011(0 10 1 70° 1 70°	5.3 7: 8.5 10.5 3P+N+PE / 3P+PE 23040 3P+N+PE / 3P+PE 23040 0 012 013 015 017 0 0 0 0 0 18000 19500 22500 25500 1100 150-1000 150-1000 15×2 15×2 20432 32×2 25×2 30+48 1 1000 21.5 22 27 30 3P+N+PE / 3P+PE 23040 1 4 -25 - + 601* (Denating 4 -25 - + 601* (Denating 4 -25 - + 601* (Denating 4 1 -25 - + 601* (Denating 4 1

Note:

- 1. The above markings are the minimum requirements required by the safety standard. For the final production samples, the additional markings which do not give rise to misunderstanding may be added.
- 2. Label is attached on the side surface of enclosure and visible after installation
- 3. Other marking plate are identical to above, except the model's name and ratings
- 4. The information covered by on marking plate was irrelevant to this report.

EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict
4	Requirements on generating plants		Р
4.1	General	This report is only evaluated and tested for generating unit; The generating plant incorporated with the generating unit shall further consider this clause and sub-clause.	N/A
4.2	Connection scheme	Shall consider in final PGS	N/A
4.3	Choice of switchgear		Р
4.3.1	General Switches shall be chosen based on the characteristics of the power system in which they are intended to be installed. For this purpose, the short circuit current at the installation point shall be assessed, taking into account, inter alia, the short circuit current contribution of the generating plant.		Ρ
4.3.2	Interface switch Switches shall be power relays, contactors or mechanical circuit breakers each having a breaking and making capacity corresponding to the rated current of the generating plant and corresponding to the short circuit contribution of the generating plant. The short- time withstand current of the switching devices shall be coordinated with rated short circuit power at the point of connection. In case of loss of auxiliary supply power to the switchgear, a secure disconnection of the switch is required immediately. Where means of isolation (according to HD 60364-5-551) is not required to be accessible to the DSO at all times, automatic disconnection with single fault tolerance according to 4.13 shall be provided. The function of the interface switch might be combined with either the main switch or the generating unit switch in a single switching device. In case of a combination, the single switching device shall be compliant to the requirements of both, the interface switch and the combined main switch or generating unit switch. As a consequence, at least two switches in series shall be present between any generating unit and the POC.	The interface switch is constructed of redundancy, made up of two series relays and power and control separately. The EUT is a PV inverter, further evaluation refers to EN 62109–1 and EN 62109–2 with respect to the interface switch.	Ρ
4.4	Normal operating range	·	Р
4.4.1	General Generating plants when generating power shall have the capability to operate in the operating ranges specified below regardless of the topology and the settings of the interface protection.		Ρ

EN 50549-1:2019				
Clause	Requirement - Test	Result - Remark	Verdict	
4.4.2	Operating frequency range The generating plant shall be capable of operating continuously when the frequency at the point of connection stays within the range of 49 Hz to 51 Hz. In the frequency range from 47 Hz to 52 Hz the generating plant should be capable of operating until the interface protection trips. Therefore, the generating plant shall at least be capable of operating in the frequency ranges, for the duration and for the minimum requirement as indicated in Table 1. Respecting the legal framework, it is possible that for some synchronous areas more stringent time periods and/or frequency ranges will be required by the DSO and the responsible party. Nevertheless, they are expected to be within the boundaries of the stringent requirement as indicated in Table 1 unless producer, DSO, TSO and responsible party agree on wider frequency ranges and longer durations.	See appended table 4.4.2	Ρ	
4.4.3	 Minimal requirement for active power delivery at underfrequency A generating plant shall be resilient to the reduction of frequency at the point of connection while reducing the maximum active power as little as possible. The admissible active power reduction due to underfrequency is limited by the full line in Figure 5 and is characterized by a maximum allowed reduction rate of 10 % of Pmax per 1 Hz for frequencies below 49,5 Hz. It is possible that a more stringent power reduction characteristic is required by the responsible party. Nevertheless this requirement is expected to be limited to an admissible active power reduction represented by the dotted line in Figure 5 which is characterised by a reduction rate of 2 % of the maximum power Pmax per 1 Hz for frequencies below 49 Hz. If any technologies intrinsic design or ambient conditions have influence on the power reduction behaviour of the system, the manufacturer shall specify at which ambient conditions the requirements can be fulfilled and eventual limitations. The information can be provided in the format of a graph showing the intrinsic behaviour of the generating unit for example at different ambient conditions. The power reduction and the ambient conditions shall comply with the specification given by the responsible party. If the generating unit does not meet the power reduction at the specified ambient conditions, the producer and the responsible party shall agree on acceptable ambient conditions. 	See appended table 4.4.3	Ρ	

EN 50549-1:2019				
Clause	Requirement - Test	Result - Remark	Verdict	
4.4.4	Continuous operating voltage range When generating power, the generating plant shall be capable of operating continuously when the voltage at the point of connection stays within the range of 85 % Un to 110 % Un. Beyond these values the under and over voltage ride through immunity limits as specified in clause 4.5.3 and 4.5.4 shall apply. In case of voltages below Un, it is allowed to reduce the apparent power to maintain the current limits of the generating plant. The reduction shall be as small as technically feasible. For this requirement all phase to phase voltages and in case a neutral is connected, additionally all phase to neutral voltages shall be evaluated.		Ρ	
4.5	Immunity to disturbances		Р	
4.5.1	GeneralIn general, generating plants should contribute to overallpower system stability by providing immunity towardsdynamic voltage changes unless safety standards require adisconnection.The following clauses describe the required immunity forgenerating plants taking into account the connectiontechnology of the generating modules.The following withstand capabilities shall be providedregardless of the settings of the interface protection.		Ρ	
4.5.2	Rate of change of frequency (ROCOF) immunityROCOF immunity of a power generating plant means that the generating modules in this plant stay connected with the distribution network and are able to operate when the frequency on the distribution network changes with a specified ROCOF. The generating units and all elements in the generating plant that might cause their disconnection or impact their behaviour shall have this same level of immunity.The generating modules in a generating plant shall have ROCOF immunity for a ROCOF equal or exceeding the value specified by the responsible party. If no ROCOF immunity value is specified, the following ROCOF immunity shall apply, making distinction between generating technologies: 	For 2Hz/s The ROCOF immunity is defined with a sliding measurement window of 500 ms.	Ρ	
4.5.3	Under-voltage ride through (UVRT)		Р	
4.5.3.1	General Generating modules classified as type B modules according to COMMISSION REGULATION 2016/631 shall comply with the requirements of 4.5.3.2 and 4.5.3.3. Generating modules classified as type A and smaller according to COMMISSION REGULATION 2016/631 should comply with these requirements. The actual behaviour of type A modules and smaller shall be specified in the connection agreement. The requirements apply to all kinds of faults (1ph, 2ph and 3ph).		Ρ	

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.5.3.2	Generating plant with non-synchronous generating technologyGenerating modules shall be capable of remaining connected to the distribution network as long as the voltage at the point of connection remains above the voltage-time curve of Figure 6. The voltage is relative to Un. The smallest phase to neutral voltage, or if no neutral is present, the smallest phase to phase voltage shall be evaluated. The responsible party may define a different UVRT characteristic. Nevertheless, this requirement is expected to be limited to the most stringent curve as indicated in Figure 6. This means that the whole generating module has to comply with the UVRT requirement. This includes all elements in a generating plant: the generating units and all elements that might cause their disconnection. For the generating unit, this requirement is considered to be fulfilled if it stays connected to the distribution grid as long as the voltage at its terminals remains above the defined voltage-time diagram.After the voltage returns to continuous operating voltage range, 90 % of pre-fault power or available power whichever is the smallest shall be resumed as fast as possible, but at the latest within 1 s unless the DSO and the responsible party requires another value.	See appended table 4.5.3	Ρ
4.5.3.3	Generating plant with synchronous generating technology		N/A
4.5.4	Over-voltage ride through (OVRT) Generating modules, except for micro-generating plants, shall be capable of staying connected to the distribution network as long as the voltage at the point of connection remains below the voltage-time curve of Figure 8. The highest phase to neutral voltage or if no neutral is present the highest phase to phase voltage shall be evaluated. This means that not only the generating units shall comply with this OVRT requirement but also all elements in a generating plant that might cause its disconnection.	See appended table 4.5.4	Ρ
4.6	Active response to frequency deviation		Р

	EN 50549-1:2019				
Clause	Requirement - Test	Result - Remark	Verdict		
4.6.1	Power response to overfrequency Generating plants shall be capable of activating active power response to overfrequency at a programmable frequency threshold f ₁ at least between and including 50,2 Hz and 52 Hz with a programmable droop in a range of at least s=2 % to s=12 %. The droop reference is Pref. Unless defined differently by the responsible party: • Pref=Pmax, in the case of synchronous generating technology and electrical energy storage systems. • Pref=PM, the actual AC output power at the instant when the frequency reaches the threshold f ₁ , in the case of all other non-synchronous generating technology The power value calculated according to the droop is a maximum power limit. If e.g. the available primary power decreases during a high frequency period below the power defined by the droop function, lower power values are permitted. The generating plant shall be capable of activating active power response to overfrequency as fast as technically feasible with an intrinsic dead time that shall be as short as possible with a maximum of 2 s and with a step response time of maximum 30 s, unless another value is defined by the relevant party. An intentional delay shall be programmable to adjust the dead time to a value between the intrinsic dead time and 2 s. After activation, the active power frequency response shall use the actual frequency at any time, reacting to any frequency increase or decrease according to the programmed droop with an accuracy of ± 10 % of the nominal power (see Figure 9). The resolution of the frequency measurement shall be ± 10 mHz or less. The accuracy is evaluated with a 1 min average value. At POC, loads if present in the producer's network might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant.		Ρ		
	Generating plants reaching their minimum regulating level shall, in the event of further frequency increase, maintain this power level constant unless the DSO and the responsible party requires to disconnect the complete plant or if the plant consists of multiple units by disconnecting individual units. The active power frequency response is only deactivated if the frequency falls below the frequency threshold f1. If required by the DSO and the responsible party an additional deactivation threshold frequency fstop shall be programmable in the range of at least 50 Hz to f1. If fstop is configured to a frequency below f1 there shall be no response according to the droop in case of a frequency decrease (see Figure 10). The output power is kept constant until the frequency falls below fstop for a configurable time tstop.		Ρ		

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
	If at the time of deactivation of the active power frequency response the momentary active power PM is below the available active power PA, the active power increase of the generating plant shall not exceed the gradient defined in 4.10.2. Settings for the threshold frequency f ₁ , the droop and the intentional delay are provided by the DSO and the responsible party. If no settings are provided, the default settings in Table 2 should be applied.		Ρ
	The enabling and disabling of the function and its settings shall be field adjustable and means shall be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO and the responsible party.		Р
	Alternatively for the droop function described above, the following procedure is allowed for generating modules if permitted by the DSO and the responsible party: • the generating units shall disconnect at randomized frequencies, ideally uniformly distributed between the frequency threshold f1 and 52 Hz; • in case the frequency decreases again, the generating unit shall start its reconnection procedure once the frequency falls below the specific frequency that initiated the disconnection; for this procedure, the connection conditions described in 4.10 do not apply; • the randomization shall either be at unit level by changing the threshold over time, or on plant level by choosing different values for each unit within a plant, or on distribution system level if the DSO specifies a specific threshold for each plant or unit connected to its distribution system. EES units that are in charging mode at the time the frequency passes the threshold f1 shall not reduce the charging power below PM until frequency returns below f1. Storage units should increase the charging power according to the configured droop. In case the maximum charging capacity is reached or to prevent any other risk of injury or		P N/A
	damage of equipment, a reduction of charging power is permitted. Power response to underfrequency EES units shall be capable of activating active power		
4.6.2	 response to underfrequency. Other generating units/plants should be capable of activating active power response to underfrequency. If active power to underfrequency is provided by a generating plant/unit, the function shall comply with the requirements below. Active power response to underfrequency shall be provided when all of the following conditions are met: when generating, the generating unit is operating at active power below its maximum active power Pmax; when generating, the generating unit is operating at active power below the available active power PA; the voltages at the point of connection of the generating plant are within the continuous operating voltage range; when generating, the generating unit is operating with currents lower than its current limit. In the case of EES units, active power frequency response to underfrequency shall be provided in charging and generating mode. 		Ρ

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
	The active power response to underfrequency shall be delivered at a programmable frequency threshold f ₁ at least between and including 49,8 Hz and 46,0 Hz with a programmable droop in a range of at least 2 % to 12 %. The droop reference P _{ref} is P _{max} . If the available primary power or a local set value increases during an underfrequency period above the power defined by the droop function, higher power values are permitted. The power value calculated according to the droop is therefore a minimum limit. The generating unit shall be capable of activating active power response to underfrequency as fast as technically feasible with an intrinsic dead time that shall be as short as possible with a maximum of 2 s and with a step response time of maximum 30 s unless another value is defined by the relevant party. An intentional initial delay shall be programmable to adjust the dead time to a value between the intrinsic dead time and 2 s.		Ρ
	After activation, the active power frequency response shall use the actual frequency at any time, reacting to any frequency increase or decrease according to the programmed droop with an accuracy of \pm 10 % of the nominal power. The accuracy is evaluated with a 1 min average value. The resolution of the frequency measurement shall be \pm 10 mHz or less. At POC loads, if present in the producer's network, might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant.		Р
	Generating modules reaching any of the conditions above during the provision of active power frequency response shall, in the event of further frequency decrease, maintain this power level constant. The active power frequency response is only deactivated if the frequency increases above the frequency threshold f1.		Р
	Settings for the threshold frequency f1, the droop and the intentional delay are defined by the DSO and the responsible party, if no settings are provided, the function shall be disabled.		Р
	The activation and deactivation of the function and its settings shall be field adjustable and means shall be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO and the responsible party.		Р
4.7	Power response to voltage changes		Р
4.7.1	General When the contribution to voltage support is required by the DSO and the responsible party, the generating plant shall be designed to have the capability of managing reactive and/or active power generation according to the requirements of this clause.		Р
4.7.2	Voltage support by reactive power		Р

EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict
4.7.2.1	General Generating plants shall not lead to voltage changes out of acceptable limits. These limits should be defined by national regulation. Generating units and plants shall be able to contribute to meet this requirement during normal network operation. Throughout the continuous operating frequency (see 4.4.2) and voltage (see 4.4.4) range, the generating plant shall be capable to deliver the requirements stipulated below. Outside these ranges, the generating plant shall follow the requirements as good as technically feasible although there is no specified accuracy required.		Ρ
4.7.2.2	Capabilities Unless specified differently below, for specific generating technologies, generating plants shall be able to operate with active factors as defined by the DSO and the responsible party from active factor = 0,90 _{underexcited} to active factor=0,90 _{overexcited} The reactive power capability shall be evaluated at the terminals of the/each generating unit		Р
	CHP generating units with a capacity \leq 150 kVA shall be able to operate with active factors as defined by the DSO from cos $\varphi = 0.95$ underexcited to cos $\varphi = 0.95$ overexcited Generating units with an induction generator coupled directly to the grid and used in generating plants above micro generating level, shall be able to operate with active factors as defined by the DSO from cos $\varphi = 0.95$ underexcited to cos $\varphi = 1$ at the terminals of the unit. Deviating from 4.7.2.3 only the cos φ set point mode is required. Deviating from the accuracy requirements below, the accuracy is only required at active power PD.		N/A
	Generating units with an induction generator coupled directly to the grid and used in micro generating plants shall operate with an active factor above 0,95 at the terminals of the generating unit. A controlled voltage support by reactive power is not required from this technology.		N/A
	Generating units with linear generators, coupled directly and synchronously to the grid shall operate with an active factor above 0,95 at the terminals of the generating unit, and therefore a controlled voltage support by reactive power is not required from this technology.		N/A
	In case of different generating technologies with different requirements in one generating plant, each unit shall provide voltage support by reactive power as required for its specific technology. A compensation of one technology to reach the general plant requirement is not expected. The DSO and the responsible party may relax the above requirements. This relaxation might be general or specific for a certain generating plant or generating technology.		N/A

EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict
	All involved parties can expect to have access to information documenting the actual choices regarding active power capabilities relative to reactive power requirements and related to the power rating in the operating voltage range (see further in this clause). A P-Q Diagram shall be included in the product documentation of a generating unit. When operating above the apparent power threshold Smin equal to 10 % of the maximum apparent power Smax or the minimum regulating level of the generating plant, whichever is the higher value, the reactive power capability shall be provided with an accuracy of ± 2 % Smax. Up to this apparent power threshold Smin, deviations above 2 % are permissible; nevertheless the accuracy shall always be as good as technically feasible and the exchange of uncontrolled reactive power in this low-power operation mode shall not exceed 10 % of the maximum apparent power Smax. At POC loads, if present in the producer's network might interfere with the response of the generating plant. The effect of loads is not considered for the evaluation of the accuracy, only the behaviour of the generating plant is relevant. For generating units with a reactive power capability at active power Pp shall be at least according Figure 13. For generating units with a reduced reactive power capability Figure 13 is only applicable up to the maximum reactive power capability.		Ρ
4.7.2.3	Control modes		Р
4.7.2.3.1	General Where required, the form of the contribution to voltage control shall be specified by the DSO. The control shall refer to the terminals of the generating units The generating plant/unit shall be capable of operating in the control modes specified below within the limits specified in 4.7.2.2. The control modes are exclusive; only one mode may be active at a time. • Q setpoint mode • Q (U) • Cos φ setpoint mode • Cos φ (P) For mass market products, it is recommended to implement all control modes. In case of site specific generating plant design, only the control modes required by the DSO need to be implemented. The configuration, activation and deactivation of the control modes shall be field adjustable. For field adjustable configurations and activation of the active control mode, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO. Which control modes are available in a product and how they are configured shall be stated in the product		Ρ
4.7.2.3.2	Setpoint control modes Q setpoint mode and $\cos \varphi$ setpoint mode control the reactive power output and the $\cos \varphi$ of the output respectively, according to a set point set in the control of the generating plant/unit. In the case of change of the set point local or by remote control the settling time for the new set point shall be less than one minute.	See appended table 4.7.2	Ρ

EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict
4.7.2.3.3	 Voltage related control mode The voltage related control mode Q (U) controls the reactive power output as a function of the voltage. There is no preferred state of the art for evaluating the voltage. Therefore it is the responsibility of the generating plant designer to choose a method. One of the following methods should be used: the positive sequence component of the fundamental. the average of the voltages measured independently for each phase to neutral or phase to phase. phase independently the voltage of every phase to determine the reactive power for every phase. 	Method 2 used	p
	 For voltage related control modes, a characteristic with a minimum and maximum value and three connected lines according to Figure 16 shall be configurable. In addition to the characteristic, further parameters shall be configurable: The dynamics of the control shall correspond with a first order filter having a time constant that is configurable in the range of 3 s to 60 s. 	See appended table 4.7.2	Ρ
	To limit the reactive power at low active power two methods shall be configurable: • a minimal cos φ shall be configurable in the range of 0-0,95; • two active power levels shall be configurable both at least in the range of 0 % to 100 % of P _D . The lock-in value turns the Q(U) mode on, the lock-out value turns Q(U) off. If lock-in is larger than lock-out a hysteresis is given. See also Figure 14. The static accuracy shall be in accordance with 4.7.2.2. The dynamic accuracy shall be in accordance with Figure 15 with a maximum tolerance of +/- 5% of P _D plus a time delay of up to 3 seconds deviating from an ideal first order filter response.		Ρ
4.7.2.3.4	Power related control mode The power related control mode $\cos \varphi$ (P) controls the $\cos \varphi$ of the output as a function of the active power output. For power related control modes, a characteristic with a minimum and maximum value and three connected lines shall be configurable in accordance with Figure 16. Resulting from a change in active power output a new $\cos \varphi$ set point is defined according to the set characteristic. The response to a new $\cos \varphi$ set value shall be as fast as technically feasible to allow the change in reactive power to be in synchrony with the change in active power. The new reactive power set value shall be reached at the latest within 10 s after the end value of the active power is reached. The static accuracy of each $\cos \varphi$ set point shall be according to $4.7.2.2$.	See appended table 4.7.2	Ρ

EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict
4.7.3	Voltage related active power reduction In order to avoid disconnection due to overvoltage protection (see 4.9.2.3 and 4.9.2.4), generating plants/units are allowed to reduce active power output as a function of this rising voltage. The final implemented logic can be chosen by the manufacturer. Nevertheless, this logic shall not cause steps or oscillations in the output power. The power reduction caused by such a function may not be faster than an equivalent of a time constant tau = 3 s (= 33%/s at a 100% change). The enabling and disabling of the function shall be field adjustable and means have to be provided to protect the setting from unpermitted interference (e.g. password or seal) if required by the DSO.	See appended table 4.7.3	Ρ
4.7.4	Short circuit current requirements on generating plants		Р
4.7.4.1	GeneralThe following clauses describe the required short circuitcurrent contribution for generating plants taking into accountthe connection technology of the generating modules.Generating modules classified as type B modules accordingto COMMISSION REGULATION 2016/631 shall comply withthe requirements of 4.7.4.2 and 4.7.4.3. Generating modulesclassified as type A according to COMMISSIONREGULATION 2016/631 should comply with theserequirements.The actual behaviour of type A modules shall be specified inthe connection agreement.		Ρ

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.7.4.2	Generating plant with non-synchronous generating techn	ology	Р
4.7.4.2.1	Voltage support during faults and voltage steps In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generating plants of type B connected to LV distribution grids, the clause 4.7.4 of EN 50549-2 applies.	Only EN 50549-1 applies, if required by the responsible party for additional reactive current, the EN 50549-2 shall be applied	Ρ
4.7.4.2.2	Zero current mode for converter connected generating technology If UVRT capability (see 4.5.3) is provided additional to the requirements of 4.5, generating units connected to the grid by a converter shall have the capability to reduce their current as fast as technically feasible down to or below 10 % of the rated current when the voltage is outside of a static voltage range. Generating units based on a doubly fed induction machine can only reduce the positive sequence current below 10 % of the rated current. Negative sequence current shall be tolerated during unbalanced faults. In case this current reduction is not sufficient, the DSO should choose suitable interface protection settings. The static voltage range shall be adjustable from 20 % to 100 % of Un for the undervoltage boundary and from 100 % to 130 % of Un for the overvoltage boundary. The default setting shall be 50% of Un for the undervoltage boundary and 120% of Un for the overvoltage boundary. Each phase to neutral voltage or if no neutral is present each phase to phase voltage shall be evaluated. At voltage re-entry into the voltage range, 90% of pre-fault power or available power, whichever is the smallest, shall be resumed as fast as possible, but at the latest according to 4.5.3 and 4.5.4. All described settings are defined by the DSO and the responsible party. If no settings are provided, the function shall be disabled. The enabling and disabling and the settings shall be field adjustable and means have to be provided to protect these from unpermitted interference (e.g. password or seal) if required by the DSO.	Not Applicable for the inverter	N/A
4.7.4.2.3	Induction generator based units In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment.		N/A

	EN 50549-1:2019				
Clause	Requirement - Test	Result - Remark	Verdict		
4.7.4.3	Generating plant with synchronous generating technology - Synchronous generator based units In general no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. If the responsible party requires voltage support during faults and voltage steps for generating plants of type B connected to LV distribution grids, the clause 4.7.4 of EN50549-2 applies.		Ρ		
4.8	EMC and power quality Similar to any other apparatus or fixed installation, generating units shall comply with the requirements on electromagnetic compatibility established in Directive 2014/30/EU or 2014/53/EU, whichever applies. EMC limits and tests, described in EN 61000 series, have been traditionally developed for loads, without taking into account the particularities of generating units, such as their capability to create overvoltages or high frequency disturbances due to the presence of power converters, which were either impossible or less frequent in case of loads.		Ρ		
4.9	Interface protection		Р		
4.9.1	 General According to HD 60364-5-551:2010, 551.7.4, means of automatic switching shall be provided to disconnect the generating plant from the distribution network in the event of loss of that supply or deviation of the voltage or frequency at the supply terminals from values declared for normal supply. This automatic means of disconnection has following main objectives: prevent the power production of the generating plant to cause an overvoltage situation in the distribution network it is connected to. Such overvoltages could result in damages to the equipment connected to the distribution network as well as the distribution network itself; detect unintentional island situations and disconnect the generating plant in this case. This is contributing to prevent damage to other equipment, both in the producers' installations and the distribution network due to out of phase re-closing and to allow for maintenance work after an intentional disconnection of a section of the distribution network. assist in bringing the distribution network to a controlled state in case of voltage or frequency deviations beyond corresponding regulation values. 		Ρ		

	EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict	
	 disconnect the generating plant from the distribution network in case of faults internal to the power generating plant. Protection against internal faults (short-circuits) shall be coordinated with network protection, according to DSO protection criteria. Protection against e.g. overload, electric shock and against fire hazards shall be implemented additionally according to HD 60364-1 and local requirements. prevent damages to the generating unit due to incidents (e.g. short circuits) on the distribution network Interface protections may contribute to preventing damage to the generating units due to out-of-phase reclosing of automatic reclosing which may happen after some hundreds of ms. However, in some countries some technologies of generating units are explicitly required to have an appropriate immunity level against the consequences of out-of-phase reclosing. The type of protection and the sensitivity and operating times depend upon the protection and the characteristics of the distribution network. A wide variety of approaches to achieve the above mentioned objectives is used throughout Europe. Besides the passive observation of voltage and frequency other active and passive methods are available and used to detect island situations. The requirements given in this clause are intended to provide the necessary functions for all known approaches as well as to give guidance in their use. Which functions are available in a product shall be stated in the product documentation. 		Ρ	
	The interface protection system shall comply with the requirements of this European Standard, the available functions and configured settings shall comply with the requirements of the DSO and the responsible party. In any case, the settings defined shall be understood as the values for the interface protection system, i.e. where there is a wider technical capability of the generation module, it shall not be withheld by the settings of the protections (other than the interface protection). For micro generating plants, the interface protection system and the point of measurement might be integrated into the generating units. For generating plants with nominal current above 16 A the DSO may define a threshold above which the interface protection system shall be realized as a dedicated device and not integrated into the generating units.	Integrated into the generating units If specified by country requirement, the interface protection shall not be integrated	Ρ	

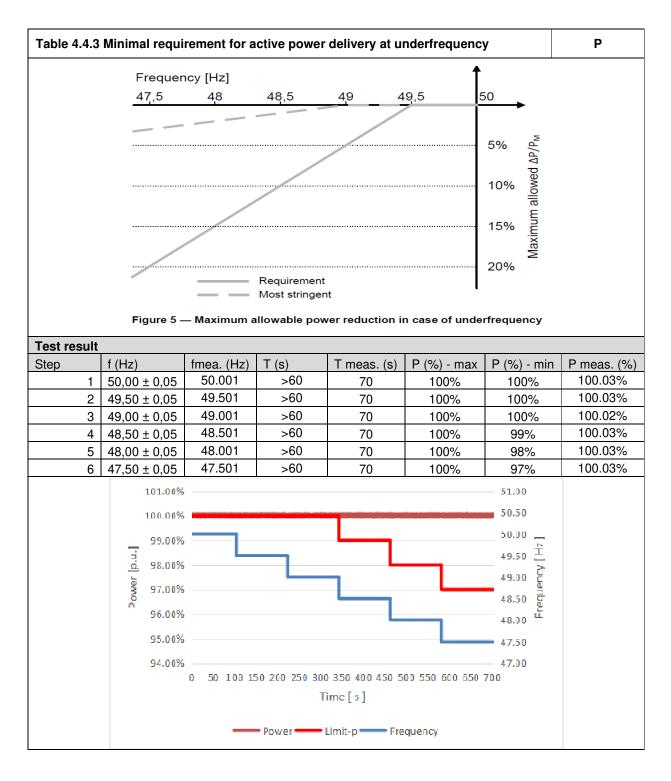
EN 50549-1:2019			
Clause	Requirement - Test	Result - Remark	Verdict
	to place the protection system as close to the point of connection as possible, to avoid tripping due to overvoltages resulting from the voltage rise within the producer's network; • to allow for periodic field tests. In some countries periodic field tests are not required if the protection system meets the requirements of single fault safety. The interface protection relay acts on the interface switch. The DSO may require that the interface protection relay acts additionally on another switch with a proper delay in case the interface switch fails to operate. In case of failure of the power supply of the interface protection, the interface protection shall trigger the interface switch without delay. An uninterruptible power supply may be required by the DSO, for instance in case of UVRT capability, delay in protection etc. In case of field adjustable settings of threshold and operation time, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO.		Ρ
4.9.2	Void		N/A
4.9.3	Requirements on voltage and frequency protection	See appended table 4.9.3	Р
4.9.3.1	General Part or all of the following described functions may be required by the DSO and the responsible party. In case of three phase generating units/plants and in all cases when the protection system is implemented as an external protection system in a three phase power supply system, all phase to phase voltages and, if a neutral conductor is present, all phase to neutral voltages shall be evaluated. The frequency shall be evaluated on at least one of the voltages.		Ρ
	If multiple signals (e.g. 3 phase to phase voltages) are to be evaluated by one protection function, this function shall evaluate all of the signals separately. The output of each evaluation shall be OR connected, so that if one signal passes the threshold of a function, the function shall trip the protection in the specified time. The minimum required accuracy for protection is: • for frequency measurement ± 0,05 Hz; • for voltage measurement ± 1 % of Un. • The reset time shall be ≤50ms • The interface protection relay shall not conduct continuous starting and disengaging operations of the interface protection relay. Therefore a reasonable reset ratio shall be implemented which shall not be zero but be below 2% of nominal value for voltage and below 0,2Hz for frequency.		Ρ

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.9.3.2	 Undervoltage protection [27] The protection shall comply with EN 60255-127. The evaluation of the r.m.s. or the fundamental value is allowed. Undervoltage protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows. Undervoltage threshold stage 1 [27 <]: Threshold (0,2 - 1) U_n adjustable by steps of 0,01 U_n Operate time (0,1 - 100) s adjustable in steps of 0,1 s Undervoltage threshold stage 2 [27 <]: Threshold (0,2 - 1) U_n adjustable by steps of 0,01 U_n Operate time (0,1 - 5) s adjustable in steps of 0,05 s The undervoltage threshold stage 2 is not applicable for micro-generating plants 	Limits based on EN50438 see appended table 4.9.3.2(limits based on EN50438)	Ρ
4.9.3.3	Overvoltage protection [59] The protection shall comply with EN 60255-127. The evaluation of the r.m.s. or the fundamental value is allowed. Overvoltage protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows. Overvoltage threshold stage 1 [59 >]: • Threshold $(1,0 - 1,2)$ U_n adjustable by steps of 0,01 U_n • Operate time $(0,1 - 100)$ s adjustable in steps of 0,1 s Overvoltage threshold stage 2 [59 >]: • Threshold $(1,0 - 1,30)$ U_n adjustable by steps of 0,01 U_n • Operate time $(0,1 - 5)$ s adjustable in steps of 0,05 s	limits based on EN50438 see appended table 4.9.3.3(limits based on EN50438)	Ρ
4.9.3.4	Overvoltage 10 min mean protection The calculation of the 10 min value shall comply with the 10 min aggregation of EN 61000-4-30 Class S, but deviating from EN 61000-4-30 as a moving window is used. Therefore the function shall be based on the calculation of the square root of the arithmetic mean of the squared input values over 10 min. The calculation of a new 10 min value at least every 3 s is sufficient, which is then to be compared with the threshold value. • Threshold $(1,0-1,15)$ U_n adjustable by steps of 0,01 U_n • Start time \leq 3s not adjustable • Time delay setting = 0 ms	The same with Over-voltage – stage 1 protection in EN 50438	Ρ

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.9.3.5	Underfrequency protection [81 <] Underfrequency protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows. Underfrequency threshold stage 1 [81 <]: • Threshold (47,0 – 50,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 – 100) s adjustable in steps of 0,1 s Underfrequency threshold stage 2 [81 < <]: • Threshold (47,0 – 50,0) Hz adjustment by steps of 0,1 Hz • Operate time (0,1 – 5) s adjustable in steps of 0,05 s In order to use narrow frequency thresholds for islanding detection (see 4.9.3.3) it may be required to have the ability to activate and deactivate a stage by an external signal. The frequency protection shall function correctly in the input voltage range between 20 % U_n and 120 % U_n and shall be inhibited for input voltages of less than 20 % U_n . Under 0,2 Un the frequency protection is inhibited. Disconnection may only happen based on undervoltage protection.	limits based on EN50438 see appended table 4.9.3.5(limits based on EN50438)	Ρ
4.9.3.6	 Overfrequency protection [81 >] Overfrequency protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows. Overfrequency threshold stage 1 [81 >]: Threshold (50,0 - 52,0) Hz adjustment by steps of 0,1 Hz Operate time (0,1 - 100) s adjustable in steps of 0,1 s Overfrequency threshold stage 2 [81 >]: Threshold (50,0 - 52,0) Hz adjustment by steps of 0,1 Hz Operate time (0,1 - 100) s adjustable in steps of 0,1 s Overfrequency threshold stage 2 [81 >]: Threshold (50,0 - 52,0) Hz adjustment by steps of 0,1 Hz Operate time (0,1 - 5) s adjustable in steps of 0,05 s In order to use narrow frequency thresholds for islanding detection (see4.9.3.3) it may be required to have the ability to activate and deactivate a stage by an external signal. The frequency protection shall function correctly in the input voltage range between 20 % Un and 120 % Un and shall be inhibited for input voltages of less than 20 % Un. 	limits based on EN50438 see appended table 4.9.3.6(limits based on EN50438)	Ρ
4.9.4	Means to detect island situation		Р
4.9.4.1	Generalsides the passive observation of voltage and frequencyfurther means to detect an island may be required by theDSO. Detecting islanding situations shall not be contradictoryto the immunity requirements of 4.5. Commonly usedfunctions include:• Active methods tested with a resonant circuit;• ROCOF tripping;• Switch to narrow frequency band;• Vector shift• Transfer trip.Only some of the methods above rely on standards. Namelyfor ROCOF tripping and for the detection of a vector shift,also called a vector jump, currently no European Standard isavailable.		Ρ
4.9.4.2	Active methods tested with a resonant circuit These are methods which pass the resonant circuit test for PV inverters according to EN 62116	See appended table 4.9.4	Ρ

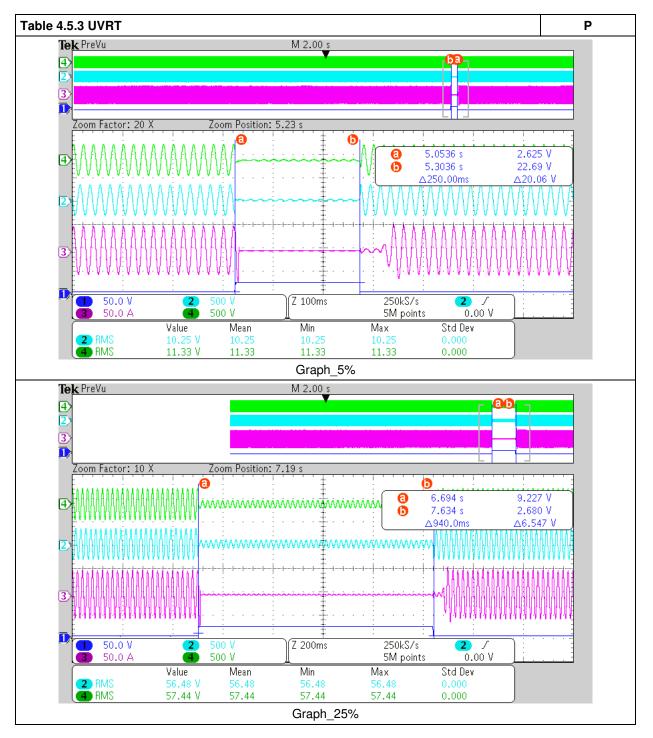
EN 50549-1:2019							
Clause	Requirement - Test	Result - Remark	Verdict				
4.9.4.3	Switch to narrow frequency band (see Annex E and Annex F) In case of local phenomena (e.g. a fault or the opening of circuit breaker along the line) the DSO in coordination with the responsible party may require a switch to a narrow frequency band to increase the interface protection relay sensitivity. In the event of a local fault it is possible to enable activation of the restrictive frequency window (using the two underfrequency/overfrequency thresholds described in 4.9.2.5 and 4.9.2.6) correlating its activation with another additional protection function. If required by the DSO, a digital input according to 4.9.4 shall be available to allow the DSO the activation of a restrictive		Ρ				
4.9.5	frequency window by communication.Digital input to the interface protectionIf required by the DSO, the interface protection shall have atleast two configurable digital inputs.These inputs can for example be used to allow transfer trip orthe switching to the narrow frequency band.		Р				
4.10	Connection and starting to generate electrical power		Р				
4.10.1	General Connection and starting to generate electrical power is only allowed after voltage and frequency are within the allowed voltage and frequency ranges for at least the specified observation time. It shall not be possible to overrule these conditions. Within these voltage and frequency ranges, the generating plant shall be capable of connecting and starting to generate electrical power. The setting of the conditions depends on whether the connection is due to a normal operational startup or an automatic reconnection after tripping of the interface protection. In case the settings for automatic reconnection after tripping and starting to generate power are not distinct in a generating plant, the tighter range and the start-up gradient shall be used. The frequency range, the voltage range, the observation time and the power gradient shall be field adjustable. For field adjustable settings, means shall be provided to protect the settings from unpermitted interference (e.g. password or seal) if required by the DSO.		Ρ				
4.10.2	Automatic reconnection after tripping The frequency range, the voltage range, the observation time shall be adjustable in the range according to Table 3 column 2. If no settings are specified by the DSO and the responsible party, the default settings for the reconnection after tripping of the interface protection are according to Table 3 column 3. After reconnection, the active power generated by the generating plant shall not exceed a specified gradient expressed as a percentage of the active nominal power of the unit per minute. If no gradient is specified by the DSO and the responsible party, the default setting is 10 % Pn/min. Generating modules for which it is technically not feasible to increase the power respecting the specified gradient over the full power range may connect after 1 min to 10 min (randomized value, uniformly distributed) or later.	See appended table 4.10.2	Р				

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.10.3	Starting to generate electrical power The frequency range, the voltage range, the observation time shall be adjustable in the range according to Table 4 column 2. If no settings are specified by the DSO and the responsible party, the default settings for connection or starting to generate electrical power due to normal operational startup or activity are according to Table 4 column 3. If applicable, the power gradient shall not exceed the maximum gradient specified by the DSO and the responsible party. Heat driven CHP generating units do not need to keep a maximum gradient, since the start up is randomized by the nature of the heat demand. For manual operations performed on site (e.g. for the purpose of initial start-up or maintenance) it is permitted to deviate from the observation time and ramp rate.	See appended table 4.10.3 Default settings are applied	Ρ
4.10.4	Synchronization Synchronizing a generating plant/unit with the distribution network shall be fully automatic i.e. it shall not be possible to manually close the switch between the two systems to carry out synchronization.		Ρ
4.11	Ceasing and reduction of active power on set point		Р
4.11.1	Ceasing active power Generating plants with a maximum capacity of 0,8 kW or more shall be equipped with a logic interface (input port) in order to cease active power output within five seconds following an instruction being received at the input port. If required by the DSO and the responsible party, this includes remote operation.	See appended table 4.11	р
4.11.2	Reduction of active power on set point For generating modules of type B, a generating plant shall be capable of reducing its active power to a limit value provided remotely by the DSO. The limit value shall be adjustable in the complete operating range from the maximum active power to minimum regulating level. The adjustment of the limit value shall be possible with a maximum increment of 10% of nominal power. A generation unit/plant shall be capable of carrying out the power output reduction to the respective limit within an envelope of not faster than 0,66 % P_n / s and not slower than 0,33 % P_n / s with an accuracy of 5 % of nominal power. Generating plants are permitted to disconnect from the network at a limit value below it minimum regulating level. If required by the DSO, this includes remote operation.	See appended table 4.11	Ρ
4.12	Remote information exchange Generating plants whose power is above a threshold to be determined by the DSO and the responsible party shall have the capacity to be monitored by the DSO or TSO control centre or control centres as well as receive operation parameter settings for the functions specified in this European Standard from the DSO or TSO control centre or control centres.		N/A

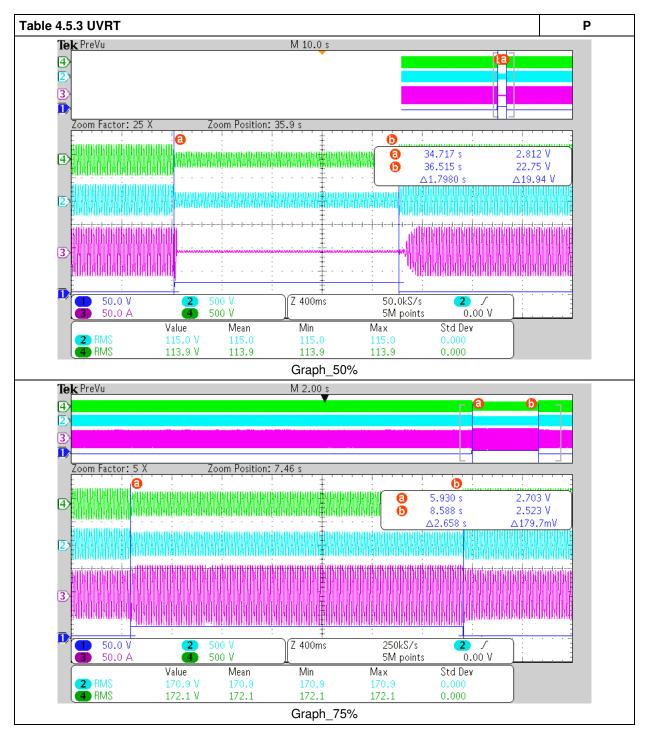

	EN 50549-1:2019		
Clause	Requirement - Test	Result - Remark	Verdict
4.13	Requirements regarding single fault tolerance of interface protection system and interface switch If required in 4.3.2, the interface protection system and the interface switch shall meet the requirements of single fault tolerance. A single fault shall not lead to a loss of the safety functions. Faults of common cause shall be taken into account if the probability for the occurrence of such a fault is significant. Whenever reasonably practical, the individual fault shall be displayed and lead to the disconnection of the power generating unit or system. Series-connected switches shall each have a independent breaking capacity corresponding to the rated current of the generating unit and corresponding to the short circuit contribution of the generating unit. The short-time withstand current of the switching devices shall be coordinated with maximum short circuit power at the connection point. At least one of the switches shall be a switch-disconnector suitable for overvoltage category 2. For single-phase generating units, the switch shall have one contact of this overvoltage category for both the neutral conductor and the line conductor. For poly-phase generating units, it is required to have one contact of this overvoltage category for all active conductors. The second switch may be formed of electronic switching components from an inverter bridge or another circuit provided that the electronic switching components can be switched off by control signals and that it is ensured that a failure is detected and leads to prevention of the operation at the latest at the next reconnection. For PV-inverters without simple separation between the network and the PV generating unit (e.g. PV Inverter without transformer) both switches mentioned in the paragraph above shall be switching device is permitted to be located between PV array and PV inverter.		Р
Annex A	Interconnection guidance		Info
Annex B	Void Devementer Tekle		Info
Annex C	Parameter Table List of national requirements applicable for generating		Info
Annex D	plants		Info
Annex E	Loss of Mains and overall power system security		Info
Annex F	Examples of protection strategies		Info
Annex H	Relationship between this European standard and the COMMISSION REGULATION (EU) 2016/631		Info

Appendices Table-Testing Result

Table 4.4.2 Oper	ating frequency range	•				Р
	Frequency range		Time period for operation Minimum requirement		Time period for operation stringent requirement	
	47.0 Hz – 47.5 Hz		Not required		20s	
	47.5 Hz - 48.5Hz		30 min ^a		90 min	
D	48.5 Hz - 49.0 Hz		30 min ª		90 min ª	
Requirement	49.0 Hz - 51.0 Hz		Unlimited		Unlimited	
	51.0 Hz - 51.5 Hz		30 min ª		90 min	
	51.5 Hz - 52.0 Hz		Not required		15 min	
	^a Respecting the legal framework, it is possible that longer time periods are required. The responsible party in some synchronous areas,					s are required by
Frequency (Hz)	F (Hz)- measure	Time (S)-limit		Time (S))	Result
47.00	47.02	20s		>20s		pass
47.50	47.50		90min	>90min		pass
48.50	48.50	90min		>90min		pass
51.00	51.00		90min	>90min		pass
51.50	51.50		90min	>90min		pass
52.00	51.98		15min	>15min		pass



able 4.	5.3 UVRT						Р	
	▲ U [p.u.]							
	T T							
1	,2						••••••	
	1 (0;	1)						
0	,8			(1,5;0,85) (3;0,85)				
0	,							
0	,6			~	/-			
				/				
0	,4							
		(0,2;0,15)						
0	,2 (0;0,15)		/**************************************				•••••	
	0 (0;0,05)	(0,25;0,05)						
	ů 0	0,5 1	1,5	2	2,5	3 3	3,5 Time [s]	
		- , -			,		, []	
				ault requireme	ent			
			— — mo:	st stringent				
est res	ult							
est at f	iull load (>	90%)						
	``````````````````````````````````````	-				<b></b>		
Udip		Туре	t min (ms)	U mea	is. (V)	T meas. (ms)	P recover (s	
		Phase A		11.01/23	0.4/229.8	250	0.088	
	1 ph	Phase B		229.9/11.	.31/229.7	251	0.087	
	-	Phase C		229.8/23	0.2/11.98	250	0.088	
5%		Phase A & B	250	11.1/10	.64/230	250	0.087	
	2 ph	Phase B & C		230/10.		250	0.087	
		Phase C & A		10.53/2		250	0.086	
		3 ph		11.33/10		250	0.088	
		Phase A		57.46/22		939	0.079	
	1 ph	Phase B		229.1/56.		939	0.079	
		Phase C			9.8/56.74	939	0.081	
25%		Phase A & B	938	57/56.	.9/230	939	0.080	
25%	2 ph	Phase A & B Phase B & C	938	57/56. 230/56.6	.9/230 67/56.95	939 938	0.080 0.080	
25%	2 ph	Phase A & B Phase B & C Phase C & A	938	57/56. 230/56.6 56.25/229	.9/230 67/56.95 9.8/56.94	939 938 938	0.080 0.080 0.080	
25%	2 ph	Phase A & B Phase B & C Phase C & A 3 ph	938	57/56. 230/56.6 56.25/229 57.44/56.	.9/230 57/56.95 9.8/56.94 .48/56.72	939 938 938 940	0.080 0.080 0.080 0.080	
25%		Phase A & B Phase B & C Phase C & A 3 ph Phase A	938	57/56. 230/56.6 56.25/229 57.44/56. 113.3/23	.9/230 57/56.95 9.8/56.94 .48/56.72 30/229.8	939 938 938 940 1799	0.080 0.080 0.080 0.080 0.080 0.081	
25%	2 ph	Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B	938	57/56. 230/56.6 56.25/229 57.44/56. 113.3/23 229.9/11	9/230 57/56.95 9.8/56.94 48/56.72 30/229.8 13.5/230	939 938 938 940 1799 1798	0.080 0.080 0.080 0.080 0.080 0.081 0.082	
		Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B Phase C		57/56. 230/56.6 56.25/229 57.44/56. 113.3/23 229.9/11 229.9/23	9/230 57/56.95 9.8/56.94 .48/56.72 80/229.8 13.5/230 30/113.3	939 938 938 940 1799 1798 1798	0.080 0.080 0.080 0.080 0.081 0.082 0.081	
25%	1 ph	Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B Phase C Phase A & B	938	57/56. 230/56.6 56.25/229 57.44/56. 113.3/23 229.9/11 229.9/23 113.3/11	9/230 57/56.95 9.8/56.94 .48/56.72 80/229.8 13.5/230 30/113.3 15/229.8	939 938 938 940 1799 1798 1798 1799	0.080 0.080 0.080 0.080 0.081 0.082 0.081 0.081	
		Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B Phase C Phase A & B Phase B & C		57/56. 230/56.6 56.25/229 57.44/56. 113.3/23 229.9/11 229.9/23 113.3/11 230/11	9/230 57/56.95 9.8/56.94 .48/56.72 30/229.8 13.5/230 30/113.3 15/229.8 5/113.5	939 938 938 940 1799 1798 1798 1799 1798	0.080 0.080 0.080 0.080 0.081 0.081 0.081 0.081 0.082	
	1 ph	Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B Phase C Phase A & B Phase B & C Phase C & A		57/56. 230/56.6 56.25/229 57.44/56. 113.3/23 229.9/11 229.9/23 113.3/11 230/11 113/23	9/230 67/56.95 9.8/56.94 48/56.72 80/229.8 13.5/230 80/113.3 15/229.8 5/113.5 80/115	939 938 938 940 1799 1798 1798 1798 1799 1798 1799	0.080 0.080 0.080 0.080 0.081 0.081 0.081 0.081 0.082 0.082	
	1 ph	Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B Phase C Phase A & B Phase B & C Phase C & A 3 ph		57/56. 230/56.6 56.25/229 57.44/56. 113.3/23 229.9/11 229.9/23 113.3/11 230/119 113/23 113.9/11	9/230 57/56.95 9.8/56.94 48/56.72 30/229.8 13.5/230 30/113.3 15/229.8 5/113.5 30/115 15/114.8	939 938 938 940 1799 1798 1798 1799 1798 1799 1798	0.080 0.080 0.080 0.080 0.081 0.081 0.081 0.081 0.081 0.082 0.082 0.082	
	1 ph 2 ph	Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B Phase C Phase A & B Phase B & C Phase C & A 3 ph Phase A		57/56. 230/56.6 56.25/229 57.44/56. 113.3/23 229.9/11 229.9/23 113.3/11 230/11 13.9/11 113.9/11 172.1/22	9/230 57/56.95 9.8/56.94 48/56.72 30/229.8 13.5/230 30/113.3 15/229.8 5/113.5 30/115 15/114.8 29/229.9	939 938 938 940 1799 1798 1798 1799 1798 1799 1798 2658	0.080 0.080 0.080 0.080 0.081 0.081 0.082 0.081 0.082 0.082 0.082 0.082 0.082	
	1 ph	Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B Phase C Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B		57/56. 230/56.6 56.25/229 57.44/56. 113.3/29 229.9/11 229.9/20 113.3/11 230/119 113/20 113.9/11 172.1/22 230/170	9/230 57/56.95 9.8/56.94 .48/56.72 30/229.8 13.5/230 30/113.3 15/229.8 5/113.5 30/115 15/114.8 29/229.9 .9/229.8	939 938 940 1799 1798 1798 1798 1799 1798 1799 1798 2658 2659	0.080 0.080 0.080 0.080 0.081 0.082 0.081 0.081 0.082 0.082 0.082 0.082 0.082 0.082 0.082	
50%	1 ph 2 ph	Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B Phase C Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B Phase B Phase C	1797	57/56. 230/56.6 56.25/229 57.44/56. 113.3/23 229.9/11 229.9/23 113.3/11 230/119 113/23 113.9/11 172.1/22 230/170 230/229	9/230 57/56.95 9.8/56.94 .48/56.72 30/229.8 13.5/230 30/113.3 15/229.8 5/113.5 30/115 15/114.8 29/229.9 .9/229.8 .1/170.9	939 938 940 1799 1798 1798 1798 1799 1798 1799 1798 2658 2659 2658	0.080 0.080 0.080 0.080 0.081 0.082 0.081 0.081 0.082 0.082 0.082 0.082 0.082 0.083 0.083	
	1 ph 2 ph 1 ph	Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B Phase C Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B Phase C Phase C Phase A		57/56. 230/56.6 56.25/229 57.44/56. 113.3/23 229.9/11 229.9/23 113.3/11 230/119 113.29/11 172.1/22 230/170 230/229 170.2/17	9/230 57/56.95 9.8/56.94 .48/56.72 30/229.8 13.5/230 30/113.3 15/229.8 5/113.5 30/115 15/114.8 29/229.9 .9/229.8 .1/170.9 72/229.8	939         938         938         940         1799         1798         1798         1799         1798         2658         2658         2658         2658         2658	0.080 0.080 0.080 0.080 0.081 0.081 0.081 0.081 0.082 0.082 0.082 0.082 0.082 0.083 0.082 0.082	
50%	1 ph 2 ph	Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B Phase C Phase A & B Phase B & C Phase C & A 3 ph Phase A Phase B Phase B Phase C	1797	57/56. 230/56.6 56.25/229 57.44/56. 113.3/23 229.9/11 229.9/23 113.3/11 230/113 113.23 113.9/11 172.1/22 230/170 230/229 170.2/17 229.9/1	9/230 57/56.95 9.8/56.94 .48/56.72 30/229.8 13.5/230 30/113.3 15/229.8 5/113.5 30/115 15/114.8 29/229.9 .9/229.8 .1/170.9 72/229.8	939 938 940 1799 1798 1798 1798 1799 1798 1799 1798 2658 2659 2658	0.080 0.080 0.080 0.080 0.081 0.082 0.081 0.081 0.082 0.082 0.082 0.082 0.082 0.083 0.083	


The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: Undervoltage of 50%Un.



Page 32 of 83

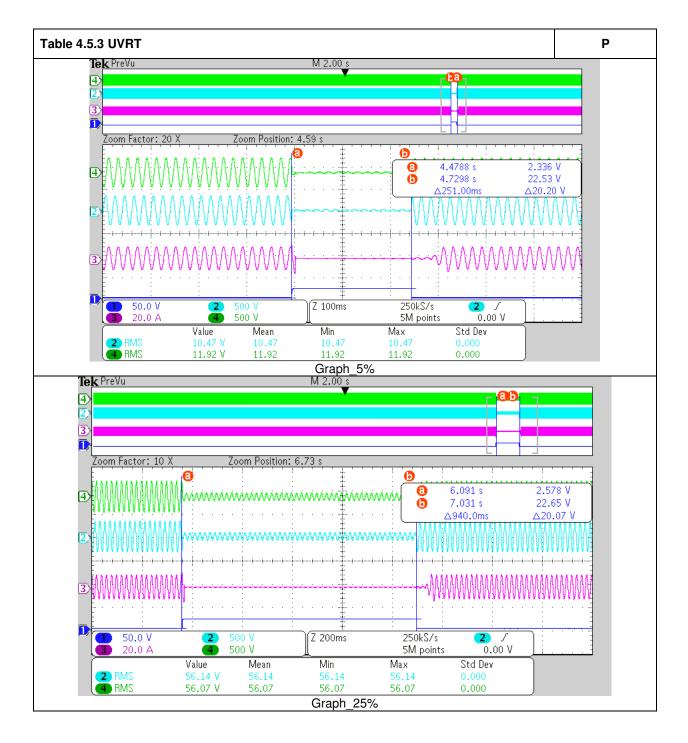




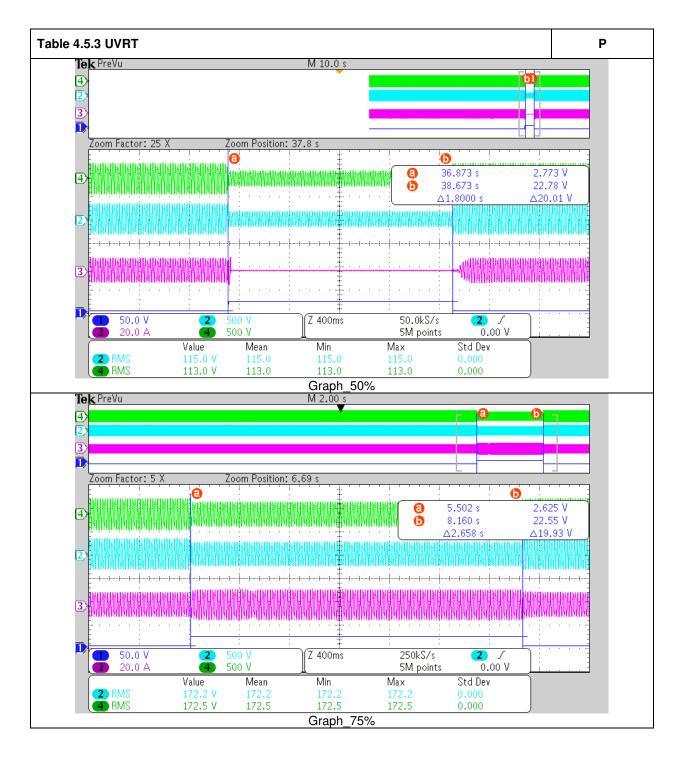




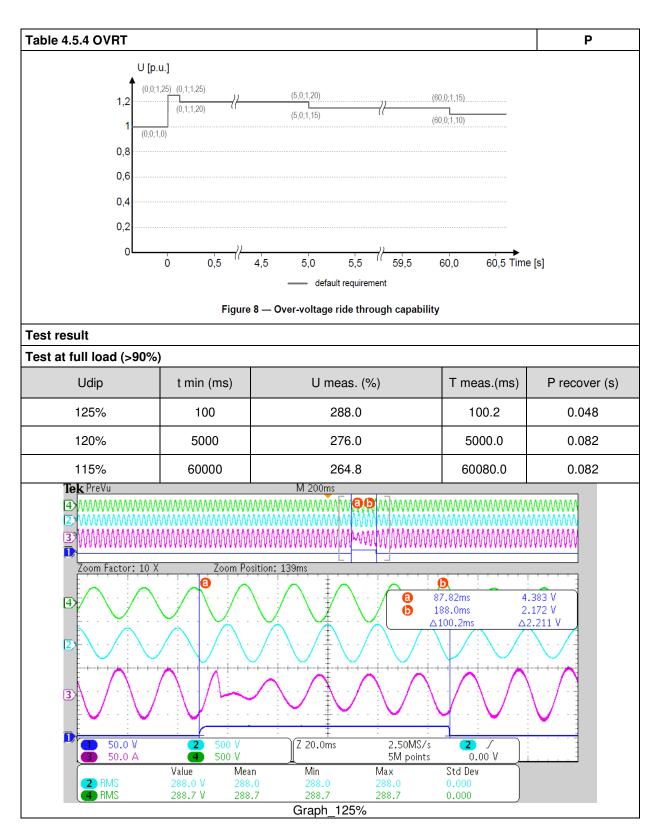
Ρ


## Table 4.5.3 UVRT

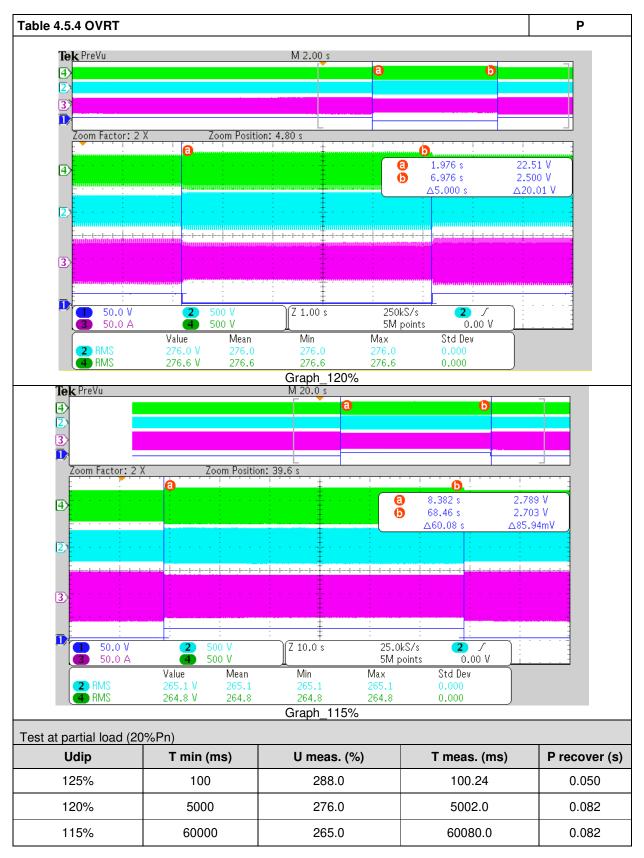
_						
Fest at	partial lo	ad (20%)				
Udip		Туре	t min (ms)	U meas. (V)	T meas. (ms)	P recover (s)
5%		Phase A		11.14/229.8/229.6	251	0.085
	1 ph	Phase B		229.8/11.2/229.9	251	0.087
		Phase C		230/229.9/11.41	250	0.087
		Phase A & B	250	11.21/10.57/229.8	251	0.088
	2 ph	Phase B & C		230/10.02/11.78	251	0.087
		Phase C & A		10.76/229.8/11.97	250	0.087
	3 ph			11.92/10.47/11.56	251	0.087
		Phase A		56.36/230/229.8	939	0.080
	1 ph	Phase B		229.4/56.08/230	940	0.080
		Phase C		229.9/230/56.52	938	0.081
25%		Phase A & B	938	56.68/56.57/230	939	0.080
	2 ph	Phase B & C		229.8/56.59/56.7	940	0.080
	· · ·	Phase C & A		56.61/229.9/56.1	938	0.080
	3 ph			56.07/56.14/56.12	940	0.080
		Phase A		115.7/230.3/229.9	1800	0.082
	1 ph	Phase B		229.8/113.9/229.8	1798	0.081
		Phase C		229.9/230.3/113.8	1797	0.081
50%		Phase A & B	1797	115.3/113.1/230	1798	0.083
	2 ph	Phase B & C		229.9/115/113.1	1799	0.080
		Phase C & A		113.8/229.8/115	1797	0.081
	3 ph		[	113/115/114	1800	0.082
		Phase A		172.1/229.1/229.8	2658	0.082
75%	1 ph	Phase B	]	228.4/172.4/230	2656	0.082
		Phase C	] [	230/229.2/172.1	2656	0.081
		Phase A & B	2656	172.5/172.2/230	2659	0.082
	2 ph	Phase B & C		230/170.3/170.1	2659	0.082
		Phase C & A		170.3/229.8/170.2	2658	0.081
		3 ph		172.5/172.2/172.3	2658	0.082


#### Remark:

The tests are performed together with clause 4.7.4.2.2 Zero current mode and enabling of default setting: Undervoltage of 50%Un.

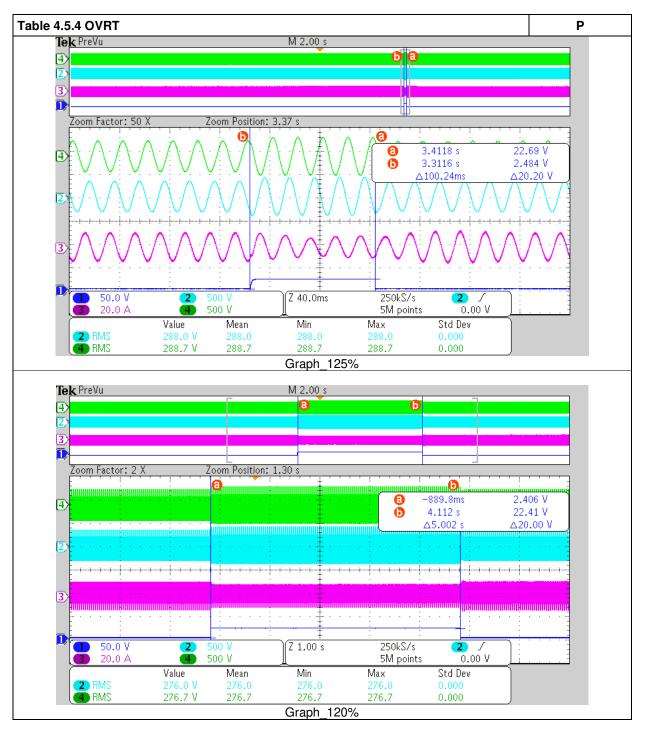
















Page 39 of 83







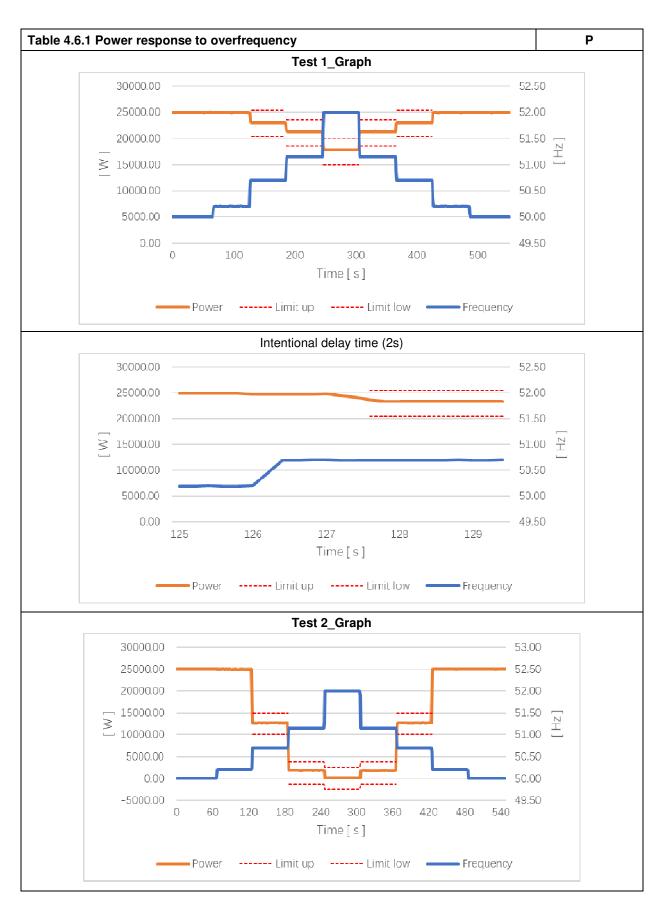
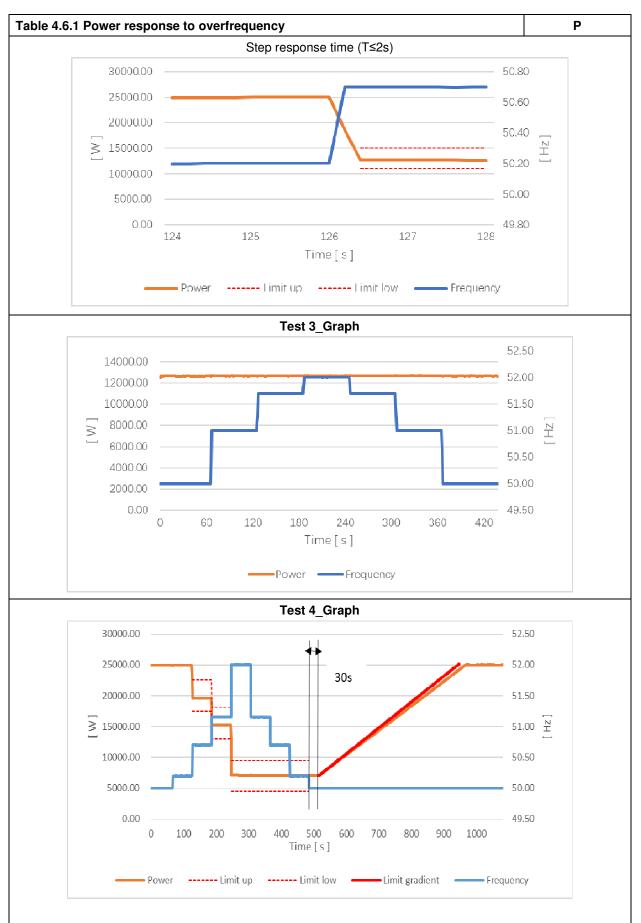



Table 4.6.1 Power re	esponse	to overfrequ	iency				Р
		100% Pn, f1	=50.2Hz; droo	p=12%; f-sto	p deactivated	d, with del	ay of 2 s
Test 1	f (Hz)	Measure d output Power (W)	Calculated from standard characteristi c curve P (W)	Toleranc e between measure d P and calculate d P (W)	Tolerance Limit (W)	For a reducti on of active power of 50% Pmax T≤2s	For a reduction of active power T≤20s
50Hz ± 0.01Hz	50.00	24984.88	25000.00				
50.2Hz ± 0.01Hz	50.20	24945.95	25000.00				
50.70Hz ± 0.01Hz	50.70	23060.73	22916.67	144.06	± 2500	1.2s	1.4s
51.15Hz ± 0.01Hz	51.15	21322.88	21041.67	281.22	± 2500	0.2s	0.4s
52.0Hz ± 0.01Hz	52.00	17802.40	17500.00	302.40	± 2500	0.2s	0.4s
51.15Hz ± 0.01Hz	51.15	21305.72	21041.67	264.05	± 2500	0.2s	0.4s
50.70Hz ± 0.01Hz	50.70	23013.58	22916.67	96.92	± 2500	0.2s	0.4s
50.2Hz ± 0.01Hz	50.20	24943.93	25000.00			0.4s	0.6s
50Hz ± 0.01Hz	50.00	24989.25	25000.00				
		100% P	n, f1 =50.2Hz; (	droop=2%; f	-stop deactiva	ated, no d	elay
Test 2	f (Hz)	Measure d output Power (W)	Calculated from standard characteristi c curve P (W)	Toleranc e between measure d P and calculate d P (W)	Tolerance Limit (W)	For a reductio of active power c 50% Pmax T≤2s	e reduction of
50Hz ± 0.01Hz	50.00	25013.66	25000.00				
50.2Hz ± 0.01Hz	50.20	24835.90	25000.00				
50.70Hz ± 0.01Hz	50.70	12560.47	12500.00	60.47	± 2500	0.4s	0.4s
51.15Hz ± 0.01Hz	51.15	1861.50	1250.00	611.50	± 2500	0.4s	0.6s
52.0Hz ± 0.01Hz	52.00	83.20	0.00	83.20	± 2500	0.4s	0.4s
51.15Hz ± 0.01Hz	51.15	1835.83	1250.00	585.83	± 2500	0.4s	0.4s
50.70Hz ± 0.01Hz	50.70	12679.54	12500.00	179.54	± 2500	0.4s	0.4s
50.2Hz ± 0.01Hz	50.20	24982.87	25000.00			0.4s	0.4s
50Hz ± 0.01Hz	50.00	25003.97	25000.00				

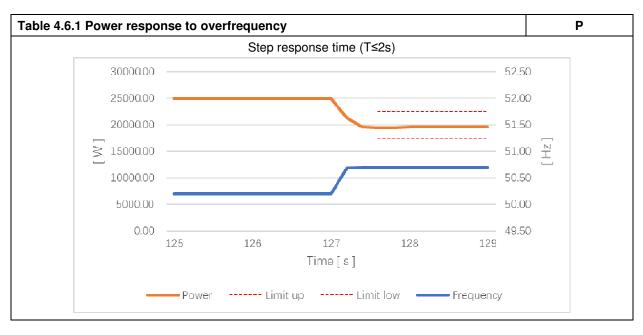



Table 4.6.1 Power r	esponse	to overfreq	uency				Р
		50% Pr	n, f1 =52.0Hz; d	lroop=5%; f-	stop deactiva	ted, no de	ay
Test 3	f (Hz)	Measure d output Power (W)	Calculated from standard characteristi c curve P (W)	Toleranc e between measure d P and calculate d P (W)	Tolerance Limit (W)	For a reduction of active power o 50% Pmax T≤2s	reduction of
50Hz ± 0.01Hz	50.00	12616.49	12500.00				
51.0Hz ± 0.01Hz	51.05	12641.50	12500.00	141.50	± 2500		
51.70Hz ± 0.01Hz	51.70	12643.36	12500.00	143.36	± 2500		
52.0Hz ± 0.01Hz	52.00	12648.43	12500.00	148.43	± 2500		
51.70Hz ± 0.01Hz	51.70	12651.85	12500.00	151.85	± 2500		
51.00Hz ± 0.01Hz	51.00	12641.50	12500.00	141.50	± 2500		
50Hz ± 0.01Hz	50.00	12629.16	12500.00				
	100% I	Pn, f1 =50.2H	Hz; droop=5%;	f-stop =50.1,	, no delay, De	activation	time t <b>stop</b> 30s
Test 4	f (Hz)	Measure d output Power (W)	Calculated from standard characteristi c curve P (W)	Toleranc e between measure d P and calculate d P (W)	Tolerance Limit (W)	For a reduction of active power o 50% Pmax T≤2s	reduction of
50Hz ± 0.01Hz	50.00	24950.13	25000.00				
50.2Hz ± 0.01Hz	50.20	24906.05	25000.00				
50.70Hz ± 0.01Hz	50.70	19550.62	20000.00	-449.38	± 2500	0.4s	0.4s
51.15Hz ± 0.01Hz	51.15	15237.88	15500.00	-262.12	± 2500	0.4s	0.4s
52.0Hz ± 0.01Hz	52.00	7085.05	7000.00	85.05	± 2500	0.4s	0.4s
51.15Hz ± 0.01Hz	51.15	7046.60	7000.00	46.60	± 2500		
50.70Hz ± 0.01Hz	50.70	7046.38	7000.00	46.38	± 2500		
50.2Hz ± 0.01Hz	50.20	7044.34	7000.00	44.34	± 2500		
50Hz ± 0.01Hz	50.00	17265.22	25000.00				








Page 44 of 83

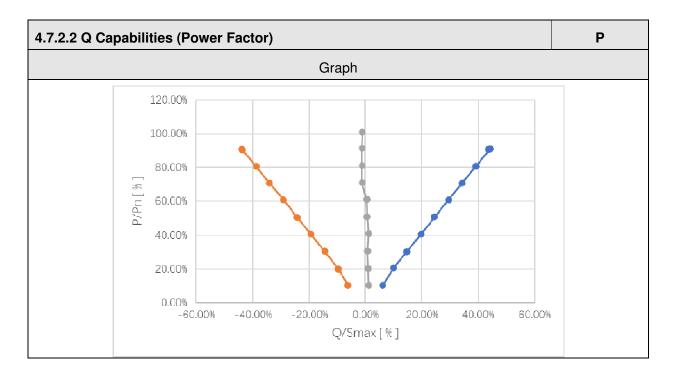


TRF No. TTRF_ 50549-1



#### Page 45 of 83

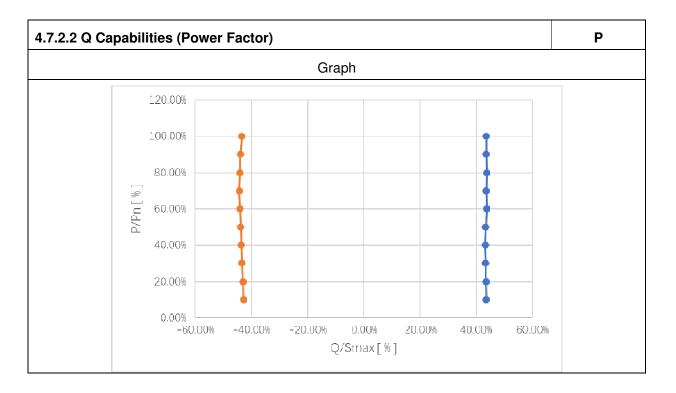




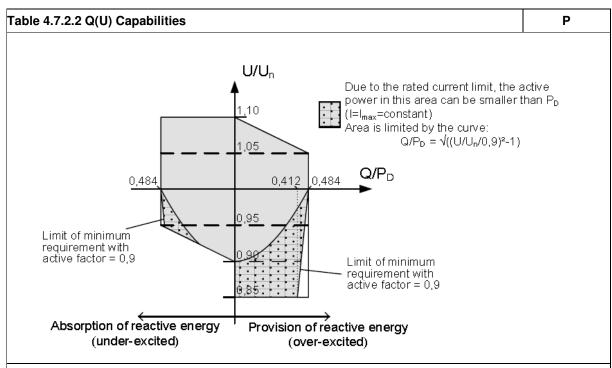

4.7.2.2 Q (	Capabilities	(Power Fac	ctor)					Р
				P₀	0 Smax	55555 C	Requirement Design freedom Further requirem n some countrie	nent
	(ui	- 0,484 n of reactive nder-excited;	energy	0.1 S	+ 0,484 Pt Provision c	) of reactive ene er-excited)	ergy	
Test resul Leading P	-							
P/P _n [%] setpoint	P[W]	Q[Var]	Cos φ	Cos φ Set point	∆cos φ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	2556	1538	0.8566	0.9	-0.043	1211	0.131	± 2
20	5114	2476	0.8999	0.9	0.000	2422	0.044	± 2
30	7598	3688	0.8995	0.9	0.000	3632	0.067	± 2
40	10136	4946	0.8986	0.9	-0.001	4843	0.165	± 2
50	12684	6147	0.8998	0.9	0.000	6054	0.187	± 2
60	15239	7397	0.8996	0.9	0.000	7265	0.317	± 2
70	17708	8594	0.8996	0.9	0.000	8476	0.331	± 2
80	20166	9800	0.8994	0.9	-0.001	9686	0.364	± 2
90	22747	11064	0.8992	0.9	-0.001	10897	0.602	± 2
*100	22699	10897	0.9015	0.9	0.001			
*Bemark:	Due to the	max currer	nt limit, the	e active pov	ver can't ge	et to 100%		

intertek Total Quality. Assured.

4.7.2.2 Q	Capabilitie	es (Power	Factor)					Р
Lagging P	PF=-0.9:							
P/P _n [%] setpoint	P[W]	Q[Var]	Cosφ	Cosφ Set point	Δcosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	2569	-1549	0.8561	0.9	-0.044	-1211	-0.135	± 2
20	5011	-2440	0.8989	0.9	-0.001	-2422	-0.015	± 2
30	7604	-3619	0.9029	0.9	0.003	-3632	0.016	± 2
40	10139	-4861	0.9017	0.9	0.002	-4843	-0.029	± 2
50	12673	-6063	0.9020	0.9	0.002	-6054	-0.019	± 2
60	15224	-7300	0.9017	0.9	0.002	-7265	-0.084	± 2
70	17702	-8504	0.9013	0.9	0.001	-8476	-0.080	± 2
80	20164	-9695	0.9012	0.9	0.001	-9686	-0.028	± 2
90	22720	-10939	0.9010	0.9	0.001	-10897	-0.151	± 2
100	22629	-10876	0.9013	0.9	0.001			
Q=0:								
P/P _n [%] setpoint	P[W]	Q[Var]	Cosφ	Cosφ Set point	∆cosφ	Q[Var] setpoint	∆Q/S _{max} [%]	LIMITE [%]
10	2550	276	0.9939	1	-0.006	0	0.110	± 2
20	5023	222	0.9989	1	-0.001	0	0.178	± 2
30	7621	214	0.9995	1	-0.001	0	0.257	± 2
40	10179	297	0.9996	1	0.000	0	0.476	± 2
50	12736	280	0.9997	1	0.000	0	0.559	± 2
60	15292	302	0.9998	1	0.000	0	0.725	± 2
70	17789	188	0.9999	1	0.000	0	0.526	± 2
80	20251	-284	0.9999	1	0.000	0	-0.909	± 2
90	22832	-302	0.9999	1	0.000	0	-1.087	± 2
100	25234	-317	0.9999	1	0.000	0	-1.268	± 2






4.7.2.2 Q Ca	pabilities (Powe	er Factor)				Р
Q=43.58%Pı	n					·
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Q[Var] setpoint	ΔQ/S _{max} [%]	LIMITE [%]
10	2584	10865	0.2314	10895	-0.12	± 2
20	5081	10850	0.4240	10895	-0.18	± 2
30	7542	10810	0.5721	10895	-0.34	± 2
40	10041	10800	0.6809	10895	-0.38	± 2
50	12544	10822	0.7571	10895	-0.29	± 2
60	15041	10922	0.8091	10895	0.11	± 2
70	17531	10868	0.8499	10895	-0.11	± 2
80	20078	10936	0.8782	10895	0.16	± 2
90	22578	10879	0.9009	10895	-0.06	± 2
100	22578	10879	0.9009	10895	-0.06	± 2
Q=-43.58%P	'n					·
P/Pn[%] setpoint	P[W]	Q[Var]	Cosφ	Q[Var] setpoint	ΔQ/S _{max} [%]	LIMITE [%]
10	2611	-10723	0.2366	-10895	0.69	± 2
20	5027	-10784	0.4225	-10895	0.45	± 2
30	7530	-10846	0.5703	-10895	0.19	± 2
40	10021	-10906	0.6766	-10895	-0.04	± 2
50	12553	-10976	0.7528	-10895	-0.32	± 2
60	15060	-11026	0.8068	-10895	-0.52	± 2
70	17545	-11087	0.8453	-10895	-0.77	± 2
80	20000	-11013	0.8760	-10895	-0.47	± 2
90	22504	-10980	0.8987	-10895	-0.34	± 2
100*	22506	-10855	0.9007	-10895	0.16	± 2









#### Test result:

#### Over-excited:

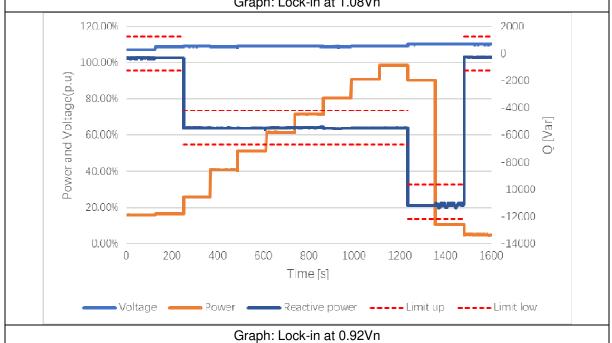
	AC o	utput		React	ive power mea	sured
Voltage setting		Measured		Reactive power	Value	Limits
[V/Vn]	Voltage [V]	[V/Vn]	Active power [W]	[Var]	[Q/P _D ]	Linits
1.10	252.99	1.10	25048	-316	-0.0126	±0.02
1.08	248.61	1.08	24587	4753	0.1901	0.174±0.02
1.05	241.59	1.05	22552	10845	0.4338	
1.00	230.25	1.00	22540	10857	0.4343	
0.95	218.63	0.95	22708	10938	0.4375	
0.92	211.42	0.92	22713	10913	0.4365	
0.90	207.10	0.90	22708	10964 0.4386		
0.85	195.41	0.85	5225.40	2520.08	0.4200	



Ρ

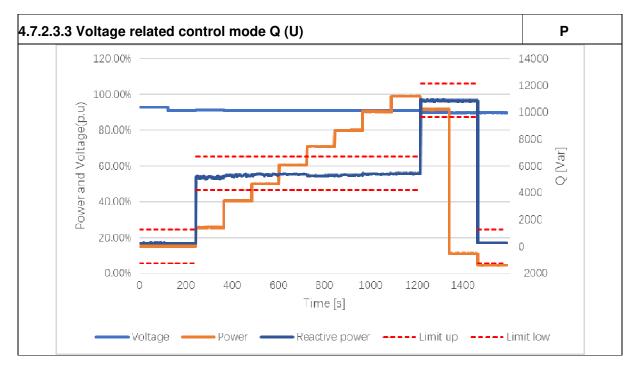
# Table 4.7.2.2 Q(U) Capabilities

						•	
Under-excited	:						
	AC o	utput		Reac	tive power mea	easured	
Voltage		Measured		Reactive	Value		
setting [V/Vn]	Voltage [V]	[V/Vn]	Active power [W]	power [Var]	[Q/P _D ]	Limits	
1.1	253.06	1.10	22704	-10982	-0.4393		
1.08	248.46 1.08 220		22654	-10973	-0.4389		
1.05	241.58 1.05 22500		22500	-10864	-0.4346		
1	230.06	1.00	22583	-10833	-0.4333		
0.95	218.49	0.95	22708	-10751	-0.4300		
0.92			24760	-4760	-0.1904	-0.174±0.02	
0.9	207.01	0.90	25041	-316	-0.0126	±0.02	




.2.3.3 Voltage	related contro	ol mode Q (U)				Р
P/P _n [%] Set-point	Vac [V] Set-point	P/Pn [%] measured	Vac[V] Measured	Q [VAr] measured	Q [Var] expected	Δ Q [Var] (≤ ± 5 % Pn)
< 20 %	1.07 V _n	15.89	246.18	-326	≈0 (< ± 5 % Pn)	-1.31
< 20 %	1.09 Vn	16.40	250.66	-313	≈0 (< ± 5 % Pn)	-1.25
20 % 30 %	1.09 Vn	25.80	250.72	-5457	-5447.50 (within 10sec)	-0.04
40 %	1.09 Vn	40.88	250.69	-5497	-5447.50	-0.20
50 %	1.09 Vn	51.16	250.77	-5501	-5447.50	-0.21
60 %	60 % 1.09 Vn 61.		250.74	-5454	-5447.50	-0.02
70 %	1.09 Vn	71.49	250.72	-5441	-5447.50	0.03
80 %	1.09 Vn	80.66	250.69	-5528	-5447.50	-0.32
90 %	1.09 Vn	90.83	250.84	-5483	-5447.50	-0.14
100 %	1.09 Vn	98.66	250.73	-5460	-5447.50	-0.05
100 %	1.1 Vn	90.16	253.01	-11188	-5447.50	-1.17
00 % 10 %	1.1 Vn	10.36	253.05	-11142	-10895.00	-0.99
0 % ≤ 5 %	1.1 Vn	4.98	253.03	-257	≈0 (< ± 5 % Pn)	-1.03

P=0.05P_n.



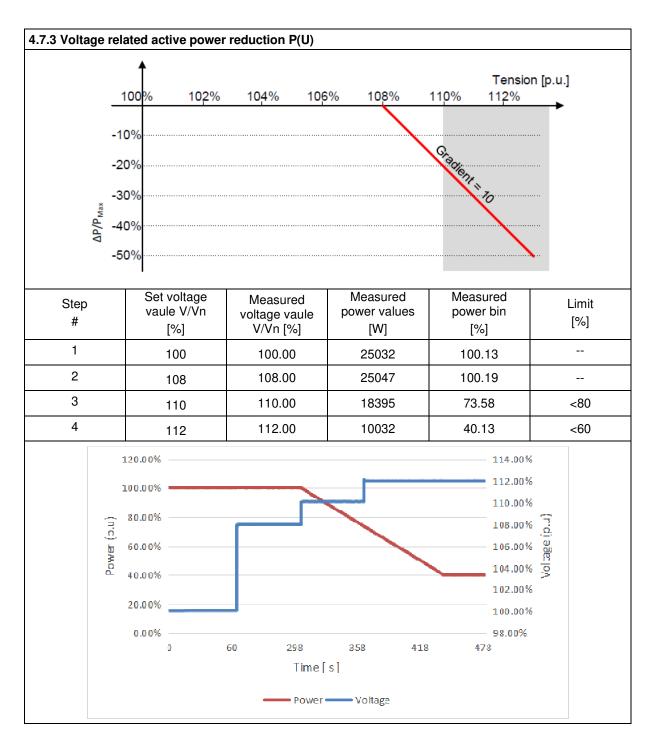

P/Pn [%]	Vac [V]	P/P _n [%]	Vac [V]	Q [VAr]	Q [Var] expected	P Δ Q [Var] (≤ ± 5 %Pn)
Set-point	Set-point	measured	Measured	PasuredMathematical measuredC [Var] expension $(13.92)$ 249 $\approx 0 (< \pm 5 \%)$ $(09.34)$ 244 $\approx 0 (< \pm 5 \%)$ $(09.74)$ 51245447,50 (within 10s) $(09.39)$ 53055447,50 (within 10s) $(09.33)$ 53595447,50 (within 10s) $(09.33)$ 53815447,50 (within 10s) $(09.33)$ 53815447,50 (within 10s) $(09.33)$ 53815447,50 (within 10s) $(09.33)$ 52875447,50 (within 10s) $(09.33)$ 52875447,50 (within 10s) $(09.33)$ 53185447,50 (within 10s) $(09.33)$ 53955447,50 (within 10s) $(09.38)$ 54305447,50 (within 10s) $(09.38)$ 54305447,50 (within 10s) $(06.67)$ 1087310895,0 (within 10s)		
< 20 %	0.93 Vn	14.99	213.92	249	≈0 (< ± 5 % Pn)	0.99
< 20 %	0.91 Vn	14.98	209.34	244	≈0 (< ± 5 % Pn)	0.98
<20 % 30 %	0.91 Vn	25.57	209.74	5124	5447,50 (within 10sec)	-1.29
40 %	0.91 Vn	40.50	209.39	5305	5447,50	-0.57
50 %	0.91 Vn	49.99	209.35	5359	5447,50	-0.35
60 %	60 % 0.91 Vn		209.33 5381		5447,50	-0.27
70 %	0.91 Vn	70.95	209.33	5287	5447,50	-0.64
80 %	0.91 Vn	80.02	209.39	5318	5447,50	-0.52
90 %	0.91 V _n	90.46	209.40	5395	5447,50	-0.21
100 %	0.91 Vn	99.03	209.38	5430	5447,50	-0.07
100 %	0.90 Vn	91.50	206.67	10873	10895,00	-0.09
100 % 10 %	0.90 Vn	11.13	206.42	10859	10895,00	-0.14
10 % ≤ 5 %	0.91 V _n	4.71	206.56	262	≈0 (< ± 5 % Pn)	1.05
Remark: V1 _s =1.0 P=0.05Pn		1 V _n . V1i =0.92	V _n . V2 _i = 0.9	Vn. lock-in va	lue P=0.2Pn. lock-c	out value
		Grap	h: Lock-in at	1.08Vn		



TRF No. TTRF_ 50549-1






4.7.2.3.4 Pc	ower related	l control mo	des					
P Desired (%Sn)	P measured (%Sn)	Q measured (Var)	Voltage Desired (%Un)	Voltage Measured (%Un)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	∆Q (%S _{Max} )	Limit (%S _{Max} )
20%	20.55	-286	<105%	103.79	1.0000	0.9984	-1.11%	±2
30%	30.48	-215	<105%	103.74	1.0000	0.9995	-0.83%	±2
40%	40.50	-284	<105%	103.65	1.0000	0.9996	-1.10%	±2
50%	50.72	-275	<105%	103.70	1.0000	0.9997	-1.07%	±2
60%	61.09	-371	<105%	104.93	1.0000	0.9996	-1.44%	±2
60%	61.15	-2999	>105%	105.92	0.9800	0.9812	0.18%	±2
70%	70.42	-5060	>105%	106.04	0.9600	0.9611	0.17%	±2
80%	80.69	-7118	>105%	106.14	0.9400	0.9429	0.55%	±2
90%	90.57	-9516	>105%	106.25	0.9200	0.9212	0.27%	±2
100%	90.92	-10990	>105%	106.34	0.9000	0.9003	0.07%	±2
100%	100.19	-355	<100%	100.01	1.0000	0.9998	-1.38%	±2

Remark: Tested at lock-in voltage 1.05 Vn and lock-out voltage Vn.

The Lock-in value is adjustable between Vn and 1.1Vn in 0.01V steps, the Lock-out value is adjustable between 0.9Vn and Vn in 0.01V steps



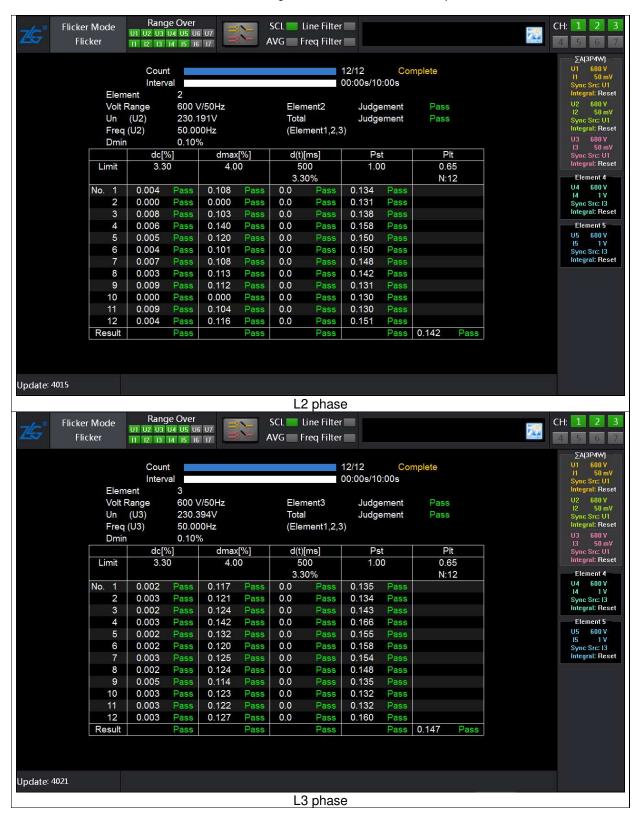
Page 57 of 83





#### 4.8 EMC

TABLE: Dire	ect current i	njection								Р
ELM3PON0	03K									
	Ratio of	Measure	d DC outp	out curren	it betweer	n terminal	s	Isolate	od.	Limit
Rated output current (A)	rated output power (VA)	L1-L2	L1-L3	L2-L3	L1-N	L2-N	L3-N	transforr (Yes/N	ner?	(mA)
4.35	33%	-	-	-	10.00	5.00	9.00	No		21.74
4.35	66%	-	-	-	9.20	9.00	10.00	No		21.74
4.35	100%	-	-	-	9.60	10.00	16.00	No		21.74
ELM3PON0	)25K									
36.23	33%	_	-	-	97.20	64.40	65.80	No		181.16
36.23	66%	-	-	-	83.30	66.50	97.40	No		181.16
36.23	100%	-	-	-	64.20	65.10	93.00	No		181.16




ABLE: F	lick												Р	
Val	ue	D	c (%)		Dm	ax (%	)	d(t) – {	500m	s	Ps	t	Pit	
Lin	nit		3.30		4	00.4		3.3	0%		1.0	0	0.65	
	L1	0	.013		0	.201		0.	.0		0.16	6	0.150	
Test value	L2	0	.009		0	.140		0.	.0		0.158		0.142	
value	L3	0	.005	0.142			0.	.0		0.16	6	0.147		
<b>K</b>	cker Mode Flicker	Ranc 01 02 03 11 12 13					Line Filter Freq Filter						CH: 1 2 2 5 6 ΣΑ(3Ρ4)	
	Count Interval Element 1 Volt Range 600 V/50Hz Un (U1) 230.206V Freq (U1) 50.000Hz Dmin 0.10%								nplete Pass Pass		Sync Src: Integral: F U2 600 I2 50 Sync Src: Integral: F U3 600	Sync Src: U1 Integral: Reset U2 600 V 12 50 mV Sync Src: U1 Integral: Reset U3 600 V		
		dc[9		dmax	<[%]	d(t)	[ms]	Pst 1.00		PI	t		13 50 Sync Src:	0 m\ : U1
	Limit	3.3	0	4.0	00		00 80%				0.65 N:12		Integral: Re Element 4	
	No. 1	0.006	Pass	0.158	Pass	0.0	Pass	0.145	Pass	IN.	2		U4 600	0 V 0
	2	0.006	Pass	0.193	Pass	0.0	Pass	0.141	Pass				Sync Src:	
	3	0.005	Pass	0.156	Pass	0.0	Pass	0.146	Pass				Integral: F	Res
	4	0.008	Pass	0.129	Pass	0.0	Pass	0.166	Pass				Element	
	5	0.007	Pass	0.142	Pass	0.0	Pass	0.156	Pass				U5 600 15 1	0 V 1 V
	6	0.006	Pass	0.170	Pass	0.0	Pass	0.160	Pass				Sync Src: Integral: F	13
	7	0.013	Pass	0.154	Pass	0.0	Pass	0.156	Pass				integral. i	ACS.
	8	0.006 0.006	Pass Pass	0.142	Pass Pass	0.0 0.0	Pass Pass	0.152 0.139	Pass Pass		2			
	10	0.006	Pass	0.168	Pass	0.0	Pass	0.139	Pass					
	11	0.005	Pass	0.194	Pass	0.0	Pass	0.141	Pass					
	12	0.000	Pass	0.201	Pass	0.0	Pass	0.160	Pass		1			
	Result		Pass		Pass		Pass		Pass	0.150	Pass			
										0				
odate: 4003														



Page 60 of 83

Report No. 2308A0284SHA-001





### Page 61 of 83

		ent limit test (EN	N 61000-3-2)				Р
Model	ELM3PON00		-		-	ſ	
		_1		2	L	.3	
Harmonic		% of		% of		% of	Limits
	Magnitude	Fundamenta	Magnitude	Fundament	Magnitude	Fundament	(A )
01	(A)		(A)	al	(A)	al 	
01	4,3346		4,3468		4,2316		
02	0,0472	1,090	0,0465	1,070	0,0260	0,614	1,08
03	0,0432	0,996	0,0304	0,699	0,0321	0,759	2,3
04	0,0508	1,172	0,0258	0,594	0,0397	0,939	0,43
05	0,0406	0,936	0,0236	0,542	0,0229	0,542	1,14
06	0,0190	0,439	0,0127	0,293	0,0147	0,348	0,30
07	0,0322	0,743	0,0265	0,609	0,0369	0,872	0,77
08	0,0153	0,353	0,0106	0,244	0,0179	0,422	0,23
09	0,0130	0,299	0,0107	0,246	0,0122	0,287	0,40
10	0,0190	0,438	0,0123	0,282	0,0121	0,285	0,184
11	0,0195	0,450	0,0249	0,574	0,0122	0,288	0,33
12	0,0140	0,322	0,0107	0,246	0,0112	0,266	0,153
13	0,0126	0,291	0,0187	0,430	0,0122	0,288	0,21
14	0,0091	0,209	0,0081	0,186	0,0073	0,173	0,131
15	0,0094	0,216	0,0083	0,192	0,0067	0,158	0,15
16	0,0106	0,245	0,0070	0,160	0,0078	0,184	0,115
17	0,0138	0,318	0,0162	0,373	0,0186	0,440	0,132
18	0,0071	0,164	0,0059	0,136	0,0060	0,142	0,102
19	0,0093	0,214	0,0080	0,183	0,0079	0,186	0,118
20	0,0064	0,149	0,0066	0,152	0,0056	0,133	0,092
21	0,0053	0,123	0,0054	0,124	0,0051	0,120	0,107
22	0,0053	0,123	0,0046	0,106	0,0047	0,110	0,084
23	0,0088	0,203	0,0086	0,199	0,0085	0,202	0,098
24	0,0057	0,131	0,0044	0,102	0,0052	0,122	0,077
25	0,0079	0,182	0,0072	0,166	0,0087	0,204	0,09
26	0,0045	0,104	0,0041	0,094	0,0043	0,102	0,071
27	0,0041	0,095	0,0039	0,089	0,0041	0,098	0,083
28	0,0048	0,110	0,0036	0,083	0,0036	0,085	0,066
29	0,0055	0,127	0,0058	0,132	0,0057	0,134	0,078
30	0,0043	0,100	0,0038	0,087	0,0050	0,117	0,061
31	0,0063	0,145	0,0059	0,136	0,0041	0,096	0,073
32	0,0037	0,086	0,0032	0,073	0,0032	0,076	0,058
33	0,0038	0,087	0,0032	0,074	0,0032	0,077	0,068
34	0,0040	0,093	0,0032	0,074	0,0030	0,070	0,054
35	0,0047	0,108	0,0051	0,117	0,0045	0,107	0,064
36	0,0035	0,081	0,0028	0,065	0,0029	0,068	0,051
37	0,0053	0,123	0,0035	0,081	0,0041	0,096	0,061
38	0,0030	0,070	0,0027	0,062	0,0026	0,062	0,048
39	0,0028	0,065	0,0026	0,060	0,0025	0,060	0,058
40	0,0026	0,060	0,0025	0,057	0,0022	0,052	0,046
THD		4,090		3,160		3,490	5,0



### Page 62 of 83

		rmonic current limit test (EN 61000-3-12)										
Model	ELM3PON02											
	l	_1		2	L	.3						
Harmonic	Magnitude (A)	% of Fundamenta I	Magnitude (A)	% of Fundament al	Magnitude (A)	% of Fundament al	Limits (%)					
01	36.9993		37.2651		37.1960							
02	0.2677	0.723	0.3446	0.925	0.3672	0.987	8%					
03	0.2858	0.773	0.2326	0.624	0.2516	0.676	N/A					
04	0.0967	0.261	0.0634	0.170	0.1181	0.318	4%					
05	0.3809	1.029	0.4380	1.175	0.4051	1.089	10.7%					
06	0.0441	0.119	0.0398	0.107	0.0462	0.124	2.67%					
07	0.3975	1.074	0.1730	0.464	0.3380	0.909	7.2%					
08	0.0699	0.189	0.0715	0.192	0.0768	0.206	2%					
09	0.0506	0.137	0.0537	0.144	0.0393	0.106	N/A					
10	0.0300	0.081	0.0418	0.112	0.0376	0.101	1.6%					
11	0.1314	0.355	0.1819	0.488	0.1719	0.462	3.1%					
12	0.0390	0.105	0.0469	0.126	0.0380	0.102	1.33%					
13	0.1228	0.332	0.0616	0.165	0.0850	0.228	2%					
14	0.0311	0.084	0.0377	0.101	0.0383	0.103	N/A					
15	0.0243	0.066	0.0546	0.146	0.0615	0.165	N/A					
16	0.0255	0.069	0.0392	0.105	0.0419	0.113	N/A					
17	0.0573	0.155	0.0605	0.162	0.0313	0.084	N/A					
18	0.0227	0.061	0.0257	0.069	0.0310	0.083	N/A					
19	0.0332	0.090	0.0263	0.071	0.0340	0.092	N/A					
20	0.0131	0.036	0.0202	0.054	0.0215	0.058	N/A					
21	0.0186	0.050	0.0168	0.045	0.0196	0.053	N/A					
22	0.0114	0.031	0.0179	0.048	0.0208	0.056	N/A					
23	0.0258	0.070	0.0225	0.060	0.0307	0.082	N/A					
24	0.0110	0.030	0.0138	0.037	0.0179	0.048	N/A					
25	0.0167	0.045	0.0208	0.056	0.0132	0.036	N/A					
26	0.0074	0.020	0.0130	0.035	0.0143	0.038	N/A					
27	0.0092	0.025	0.0126	0.034	0.0150	0.040	N/A					
28	0.0066	0.018	0.0119	0.032	0.0124	0.033	N/A					
29	0.0093	0.025	0.0127	0.034	0.0131	0.035	N/A					
30	0.0055	0.015	0.0084	0.023	0.0106	0.028	N/A					
31	0.0097	0.026	0.0125	0.034	0.0126	0.034	N/A					
32	0.0052	0.014	0.0086	0.023	0.0109	0.029	<u>N/A</u>					
33	0.0070	0.019	0.0079	0.021	0.0113	0.030	N/A					
34	0.0043	0.012	0.0074	0.020	0.0112	0.030	<u>N/A</u>					
35	0.0073	0.020	0.0053	0.014	0.0096	0.026	N/A					
36	0.0041	0.011	0.0066	0.018	0.0100	0.027	<u>N/A</u>					
37	0.0066	0.018	0.0051	0.014	0.0094	0.025	<u>N/A</u>					
38	0.0037	0.010	0.0053	0.014	0.0090	0.024	<u>N/A</u>					
39	0.0061	0.016	0.0069	0.018	0.0090	0.024	<u>N/A</u>					
40	0.0044	0.012	0.0055	0.015	0.0084	0.023	N/A					
THD		2.312		2.294		2.297	13					
PWHD		1.144		1.375		1.429	22					

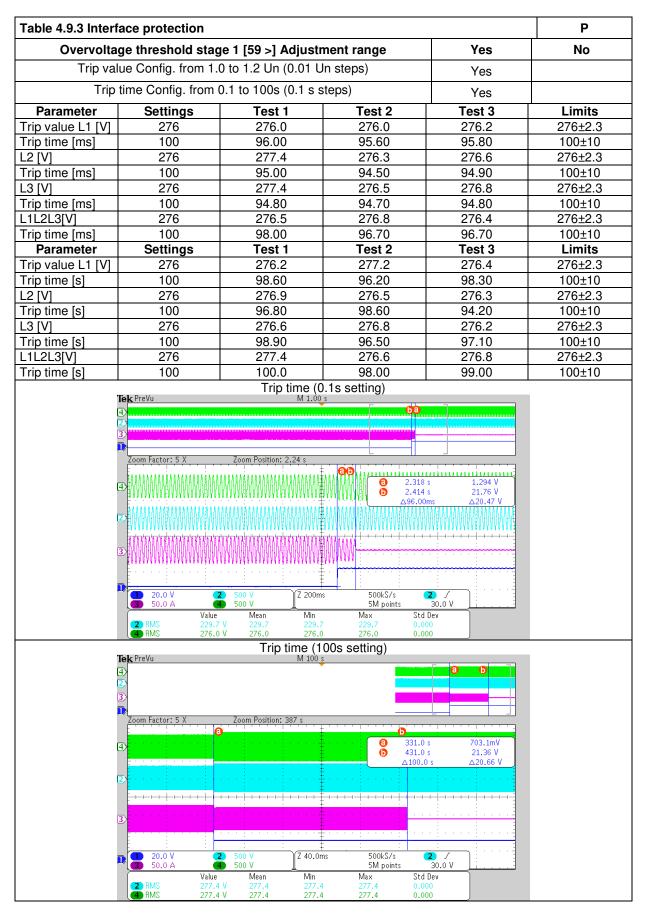
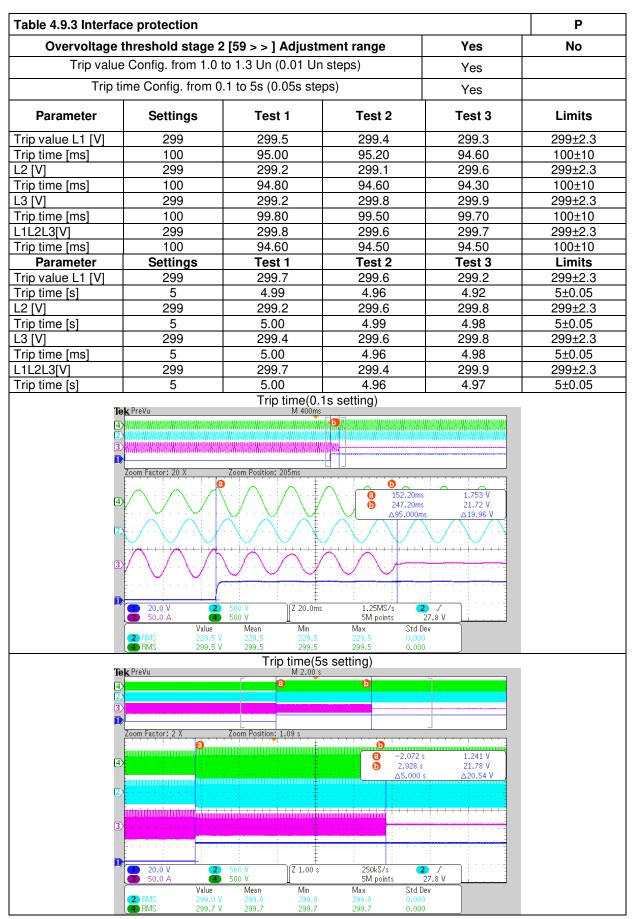
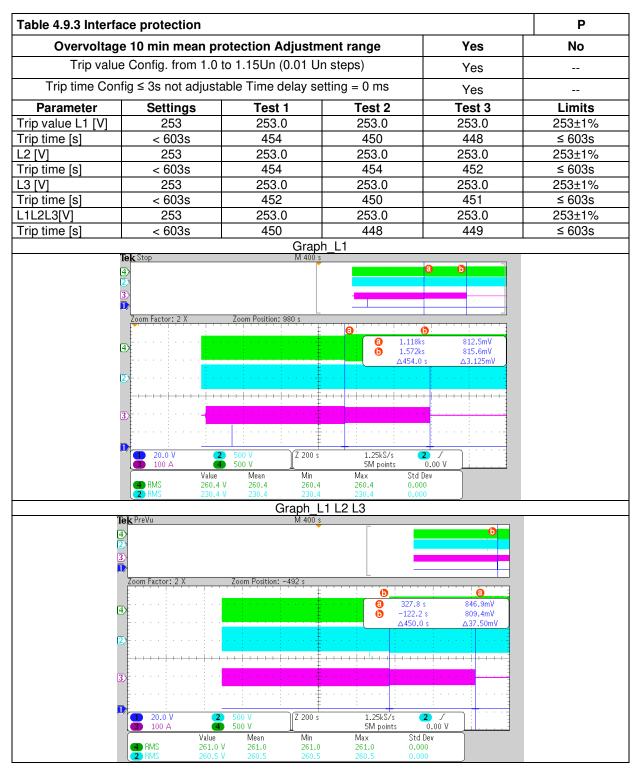


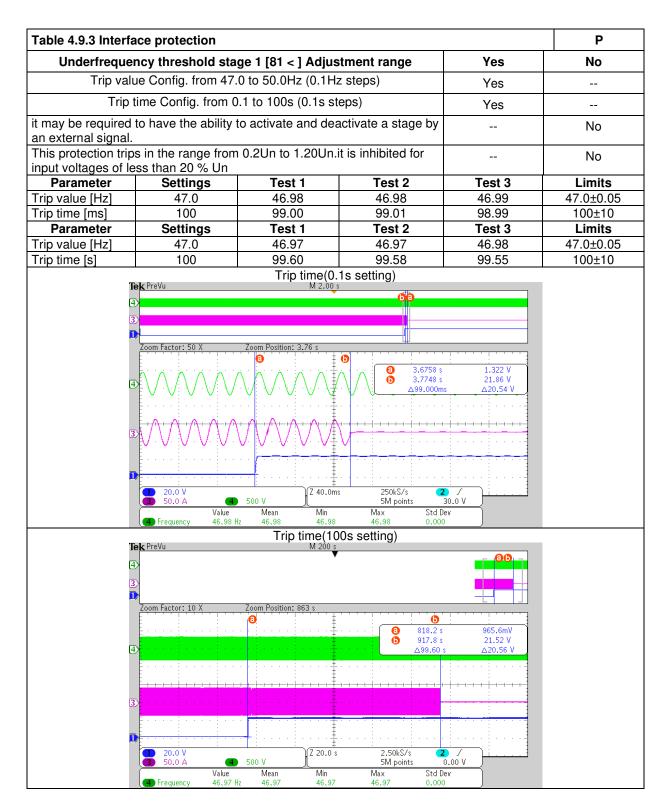

Table 4.9.3 Interf	ace protection				Р			
Undervoltage threshold stage 1 [27 < ] Adjustment range Yes								
	lue Config. from 0.2		2	Yes				
Trip t	ime Config. from 0.	1 to 100 s (0.1 s st	eps)	Yes				
Parameter	Settings	Test 1	Test 2	Test 3	Limits			
Trip value L1[V]	46	45.03	45.01	44.98	46±2.3			
Trip time [ms]	100	94.70	94.66	94.67	100±10			
L2 [V]	46	45.15	45.02	45.10	46±2.3			
Trip time [ms]	100	94.80	94.60	94.61	100±10			
L3 [V]	46	45.12	45.03	45.01	46±2.3			
Trip time [ms]	100	95.60	94.99	94.98	100±10			
_1L2L3[V]	46	45.03	45.01	45.02	46±2.3			
Trip time [ms]	100	95.20	95.03	94.98	100±10			
Parameter	Settings	Test 1	Test 2	Test 3	Limits			
Trip value L1[V]	46	45.48	44.96	44.98	46±2.3			
Trip time [s]	100	100.00	99.98	99.94	100±10			
L2 [V]	46	45.52	45.32	45.42	46±2.3			
Trip time [s]	100	99.85	99.75	99.45	100±10			
L3 [V]	46	45.23	45.10	45.23	46±2.3			
Trip time [s]	100	99.97	98.98	99.96	100±10			
L1L2L3[V]	46	45.70	45.50	45.63	46±2.3			
Trip time [s]	100	99.95	99.92	99.91	100±10			
	3 2 2 2 2 2 2 2 2 2 2 2 2 2	500 V         Mean         Min           7         229.0         229.0	€ 1.8328 ● 1.9275 △94.700 ↓ ↓ ↓ ↓ ↓ ↓ ↓ 500kS/s 5M points Max Std 229.0 0.00 45.03 0.00	s 1.563 V ns 42.991 V 				
		Trip time(10						
	ſek PreVu ₄>	INI TOO 2		0				
	Zoom Factor: 5 X	Zoom Position: 305 s		······································				
	Zoom Factor: 5 X	Zoom Position: 305 s	<ul> <li>246.9</li> <li>346.8</li> <li>Δ99.95</li> </ul>	s 21.58 V				
(		Zoom Position: 305 s	<b>(a)</b> 246.9 <b>(b)</b> 346.8	s 21.58 V				
(			246.9 346.8 <u>\</u>	s 21.58 V s $ alpha415.6mV$				



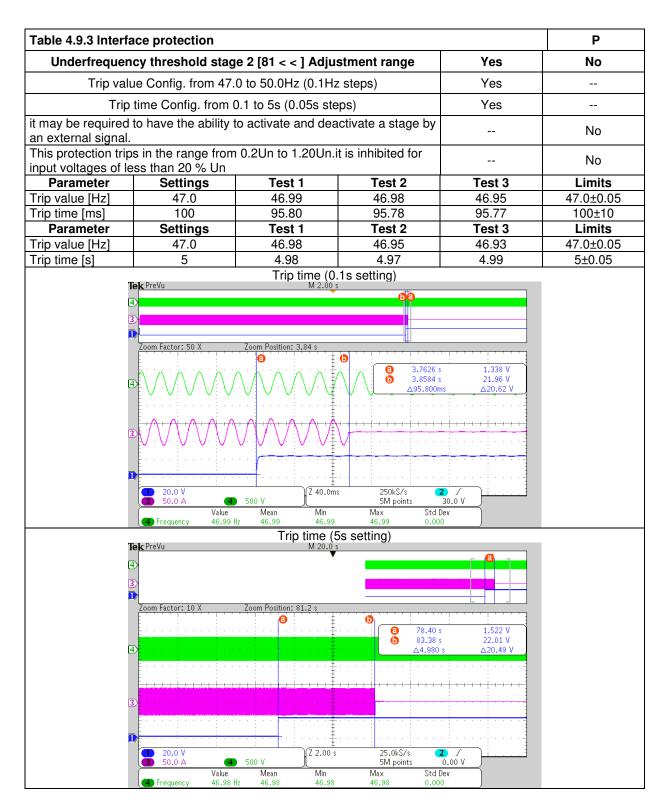

	ace protection				Р
Undervoltag	e threshold stage	2 [27 < < ] Adjus	tment range	Yes	No
Trip va	lue Config. from 0.2	to 1 Un (0.01 Un	steps)	Yes	
Trip	time Config. from 0	.1 to 5s (0.05 s ste	eps)	Yes	
Parameter	Settings	Test 1	Test 2	Test 3	Limits
value L1 [V]	46	45.04	44.88	44.96	46±2.3
p time [ms]	100	94.30	94.18	94.29	100±10
[V]	46	45.34	45.29	45.30	46±2.3
o time [ms]	100	96.00	95.86	95.98	100±10
[V]	46	45.23	45.12	45.16	46±2.3
o time [ms]	100	96.00	95.98	95.94	100±10
_2L3[V]	46	45.90	45.80	45.89	46±2.3
o time [ms]	100	96.00	95.99	95.97	100±10
Parameter	Settings	Test 1	Test 2	Test 3	Limits
value L1 [V]	46	45.10	44.79	44.88	46±2.3
o time [s]	5	4.98	4.96	4.99	5±0.05
[V]	46	4.90	45.75	45.50	46±2.3
		5.00			
o time [s]	5	45.55	5.00	4.98	5±0.05
[V] o time [s]	<u>46</u> 5	45.55	45.45	45.38	46±2.3
			4.96	4.96	5±0.05
_2L3[V] o time [s]	<u> </u>	45.40 4.98	45.32 4.99	45.36 4.97	46±2.3 5±0.05
E	Zoom Factor: 25 X	Zoom Position: 1.85 s	() () () () () () () () () ()	1.219 V	
6	<b>3</b> <b>3</b> <b>4</b> <b>5</b> <b>5</b> <b>5</b> <b>5</b> <b>5</b> <b>5</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>	500 V 500 V	1.7836 s     1.8779 s	1.219 V Δ143.7mV 1.219 V Δ143.7mV 30.0 V	
C C		500 V 500 V 229,3 45.04 45.04	s 500kS/s 5M points Max Std I 229.3 0.000 45.04 0.00	1.219 V 1.219 V 1.43.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV	
6	<b>3</b> <b>1</b> <b>2</b> <b>1</b> <b>2</b> <b>1</b> <b>2</b> <b>1</b> <b>2</b> <b>1</b> <b>2</b> <b>1</b> <b>2</b> <b>1</b> <b>2</b> <b>1</b> <b>2</b> <b>1</b> <b>2</b> <b>1</b> <b>2</b> <b>1</b> <b>1</b> <b>2</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>	500 V 500 V 229,3 229,3		1.219 V 1.219 V 1.43.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV	
1	3 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	500 V 500 V 229.3 229.3 45.04 45.04 Trip time(5		1.219 V 1.219 V 1.43.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV	
( ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	3         2	500 V 500 V 229.3 229.3 45.04 45.04 Trip time(5		1.219 V 1.219 V 1.43.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV	
C C C C C C C C C C C C C C C C C C C	Constraints of the second	500 V 500 V 229.3 229.3 45.04 45.04 Trip time(5		1.219 V 1.219 V 1.43.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV	
C C C C C C C C C C C C C C C C C C C	3         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	500 V 500 V 229.3 229.3 45.04 45.04 Trip time(5		1.219 V 1.219 V 1.43.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV 1.41.7mV	
C C C C C C C C C C C C C C C C C C C	3         29         1         20.0 V         20           3         20.0 V         20         20.0 V         20           3         50.0 A         1         20.0 V         20           4         MS         229.3 V         1         1           1         PMS         45.04 V         1         1           1         RMS         45.04 V         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	500 V 500 V 500 V 229.3 229.3 45.04 Trip time(5 M 2.00	1.7836 s     1.8779 s	1.219 V IS $\triangle 143.7mV$ 1.219 V 1.219	
( ( ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )	Image: Constraint of the second se	500 V 500 V 500 V 229.3 229.3 45.04 Trip time(5 M 2.00	<ul> <li>1.7836 s</li> <li>1.8779 s</li> <li>.94.300n</li> <li>.94.300n&lt;</li></ul>	1.219 V 1.219 V 1.43.7mV 	
( ( ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )	Com Factor: 2 X     Com Factor: 2 X	500 V 500 V 500 V 229.3 229.3 45.04 Trip time(5 M 2.00		1.219 V 1.219 V 1.43.7mV 	
( ( ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )	Image: Constraint of the second se	500 V 500 V 500 V 229.3 229.3 45.04 Trip time(5 M 2.00	<ul> <li>1.7836 s</li> <li>1.8779 s</li> <li>.94.300n</li> <li>.94.300n&lt;</li></ul>	1.219 V A143.7mV 	
( ( ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )	Image: Constraint of the second se	500 V 500 V 500 V 229.3 229.3 45.04 Trip time(5 M 2.00		1.219 V A143.7mV 	
	Image: Constraint of the second se	500 V 500 V 500 V 700 V Mean Min 229.3 229.3 45.04 45.04 Trip time(5 M 2.00 s		1.219 V A143.7mV 	
	3         2         0         0         2           3         2         0         0         2           4         1         2         0         0           5         2         0         0         2           6         1         2         0         0         0           7         1         2         0         0         0           8         1         1         0         0         0           9         1         1         0         0         0           1         1         1         0         0         0         0           1         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	500 V 500 V 500 V 700 V Mean Min 229.3 229.3 45.04 45.04 Trip time(5 M 2.00 s		1.219 V A143.7mV 	
	Image: Constraint of the second se	500 V 500 V 500 V 700 V Mean Min 229.3 229.3 45.04 45.04 Trip time(5 M 2.00 s		1.219 V A143.7mV 	
	Image: Constraint of the second se	500 V 500 V 500 V 229.3 45.04 Trip time(5 M 2.00 s 200 Position: 1.41 s 2000 Position: 1.41 s		1.219 V A143.7mV 30.0 V a a a a a a a a a a a a a	
	Image: Constraint of the second se	500 V 500 V 500 V Mean Min 229.3 229.3 45.04 45.04 Trip time(5 M 2.00 s		1.219 V Δ143.7mV 30.0 V 30.0 V 30.0 V 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	



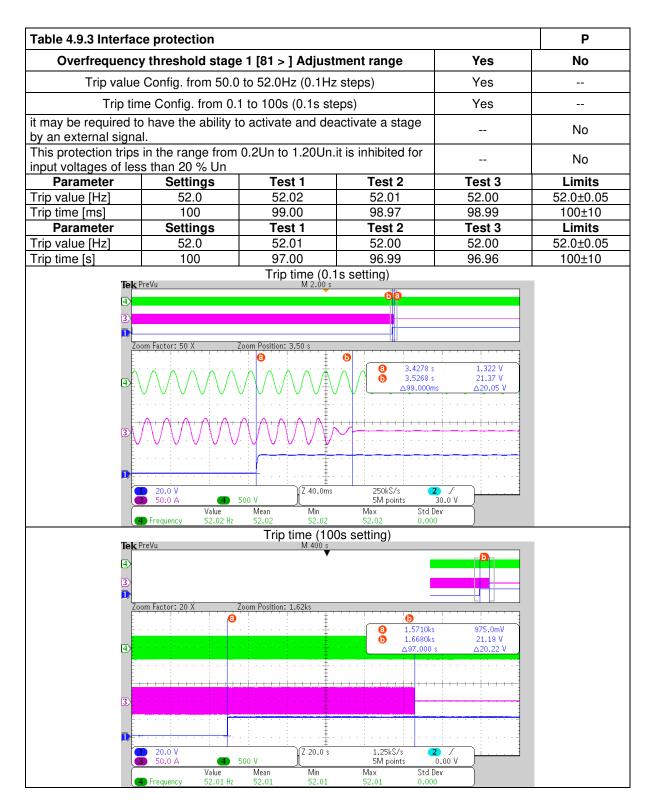


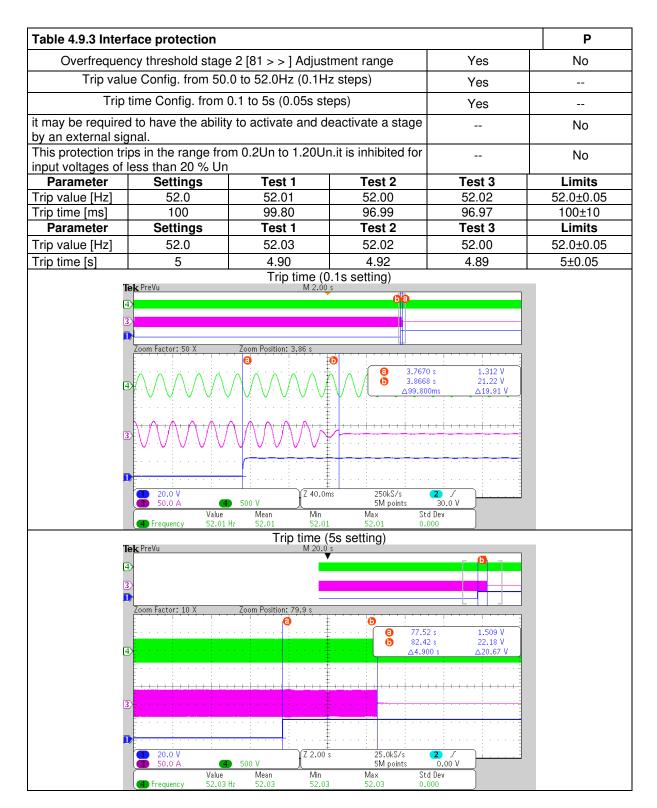
















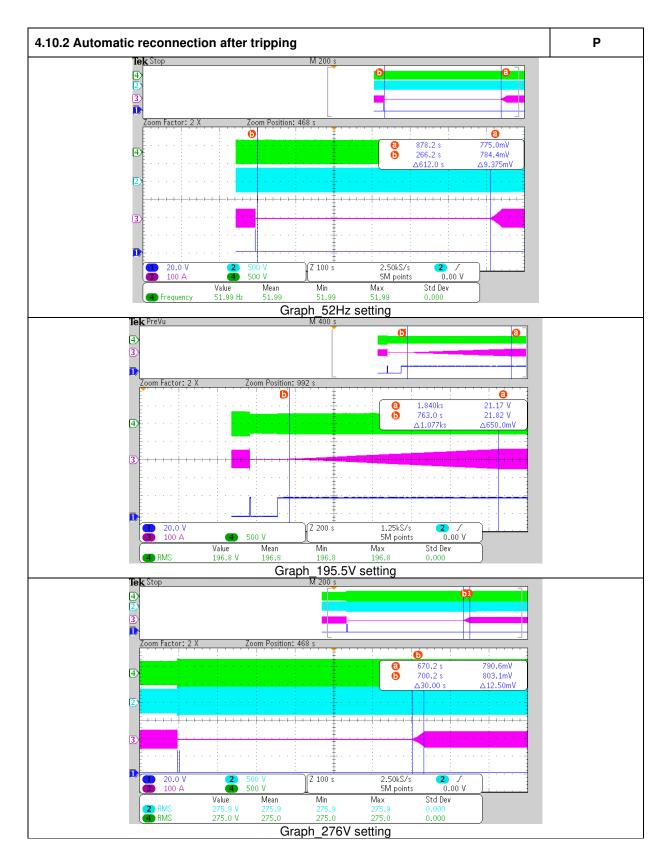



4.9.4	Means to d	etect island situ	ation						Р
No.	PEUT ¹⁾ (% of EUT rating)	Reactive load (% of QL in 6.1.d)1)	PAC ²⁾ (% of nominal)	QAC ³⁾ (% of nominal)	Run on time (ms)	P _{EUT} (W)	Actual Qf	V _{DC}	Remarks 4)
1.	100	100	0	0	386.4	25000	0.98	785	Test A at BL
2.	66	66	0	0	350.4	16500	1.01	690	Test B at BL
3.	33	33	0	0	340.6	8330	0.99	576	Test C at BL
4.	100	100	-5	-5	329.4	25000	1.01	785	Test A at IB
5.	100	100	-5	0	225.4	25000	1.02	785	Test A at IB
6.	100	100	-5	5	311.6	25000	1.02	785	Test A at IB
7.	100	100	0	-5	281.6	25000	0.97	785	Test A at IB
8.	100	100	0	5	213.6	25000	1.01	785	Test A at IB
9.	100	100	5	-5	213.6	25000	0.91	785	Test A at IB
10.	100	100	5	0	265.4	25000	0.93	785	Test A at IB
11.	100	100	5	5	310.4	25000	0.96	785	Test A at IB
12.	66	66	0	-5	209.4	16500	0.99	690	Test B at IB
13.	66	66	0	-4	228.4	16500	0.99	690	Test B at IB
14.	66	66	0	-3	247.4	16500	0.99	690	Test B at IB
15.	66	66	0	-2	267.4	16500	0.99	690	Test B at IB
16.	66	66	0	-1	280.4	16500	1.00	690	Test B at IB
17.	66	66	0	1	330.4	16500	1.01	690	Test B at IB
18.	66	66	0	2	285.4	16500	1.01	690	Test B at IB
19.	66	66	0	3	259.4	16500	1.02	690	Test B at IB
20.	66	66	0	4	238.4	16500	1.02	690	Test B at IB
21.	66	66	0	5	214.4	16500	1.03	690	Test B at IB
22.	33	33	0	-5	103.4	8330	0.98	576	Test C at IB
23.	33	33	0	-4	233.6	8330	0.95	576	Test C at IB
24.	33	33	0	-3	280.6	8330	0.96	576	Test C at IB
25.	33	33	0	-2	283.6	8330	0.97	576	Test C at IB
26.	33	33	0	-1	328.6	8330	0.97	576	Test C at IB
27.	33	33	0	1	291.6	8330	0.98	576	Test C at IB
28.	33	33	0	2	284.6	8330	0.98	576	Test C at IB
29.	33	33	0	3	254.6	8330	0.98	576	Test C at IB
30.	33	33	0	4	237.6	8330	0.99	576	Test C at IB
31.	33	33	0	5	115.4	8330	0.99	576	Test C at IB

Remark:

1) PEUT: EUT output power

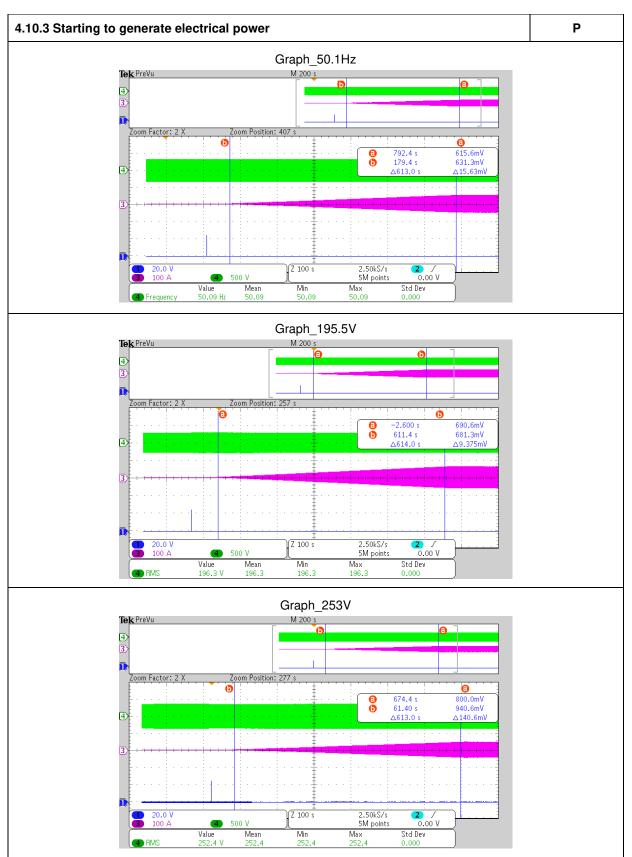
2) *P*AC: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.


3) *Q*AC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

4) BL: Balance condition, IB: Imbalance condition.



4.10.2 Automatio	c reconnection after trippi	ng		Р	
Test sequence after trip	connection	connection allowed	Observation time (s)	Power gradient after Connection (%/min)	
Step a)	47.0Hz - 50.0Hz adjustable <47.0Hz setting	No			
Step b)	47.0Hz - 50.0Hz adjustable ≥47.0Hz setting	Yes	60s setting Measured: 61.76s	6%Pn/min setting Measured:5.43% /Pn/min	
Step c)	50.0Hz - 52.0Hz adjustable >52.0Hz	No			
Step d)	50.0Hz - 52.0Hz adjustable ≤52.0Hz	Yes	600s setting Measured: 612s	200%Pn/min setting Measured: 200 % /Pn/min	
Step e)	115V - 230V adjustable <195.5V	No			
Step f)	115V - 230V adjustable ≥195.5V	Yes	60s setting Measured: 61s	6%Pn/min setting Measured: 5.57% /Pn/min	
Step g)	230V - 276V adjustable >276V	No			
Step h)	230V - 276V adjustable ≤276V	Yes	600s setting Measured: 601s	200%Pn/min setting Measured: 200 % /Pn/min	
Remark: Tested a	at default setting.				
	<b>Tek</b> PreVu	M 400 s			
	<b>4</b> ) 3) ▶		••••••••••••••••••••••••••••••••••••••		
	Zoom Factor: 2 X Zoom Posit	tion: 998 s			
(			336.0 s         21.           1.441ks         21.	01 V 06 V .25mV	
(	3				
ĺ	20.0 V     3 100 A     Value Mean	Z 200 s Min	1.25kS/s 2 / 5M points 0.00 V Max Std Dev		








	_					P
	Paramete		Range	Default settin	ng	-
	Lower fre		47,0Hz - 50,0Hz	49,5Hz		_
	Upper fre		50,0Hz - 52,0Hz	50,1Hz 85 % Un		-
	Lower vo	-	50% - 100% Un			_
	Upper vol Observati		100% – 120% U _n 10s – 600s	110 % Un		-
		wer increase gradient	6% – 3000%/min	60s nin disabled		
Test result:	Active po	wer increase gradient	076 - 3000 76/11111	disabled		
Test sequation Test sequation Test sequation at normal of starting	peration	connection	connection allowed			Power lient after nnection %/min)
Step	a)	<49.5Hz	No			
Step	b)	≥49.5Hz	Yes	66		9.63
Step	c)	>50.1Hz	No			
Step	Step d) ≤50.1Hz		Yes	63		9.78
Step	Step e) <195.5V		No			
Step	f)	≥195.5V	Yes	67		9.78
Step	g)	>253V	No			
Step	h)	≤253V	Yes	63		9.78
		efault setting.	Graph_49.5Hz		0	
	3> 1)					
	4	6	som Position: 500 s		1.9mV 5.0mV .125mV	
			som Position: 500 s	826.4 s         62           203.4 s         62           ∆623.0 s         ∆3	5.0mV	







			n by setpoint							Ρ
String	1	U _{DC} =		620 Vdc	Uac = Un	230	Vac	P _{Emax} (K)	N)	25
		ean value F etpoint (%)	P/Pn	Pmeas	Pmeasured (%)			(%)		imit [%]
		100%		10	0.05		0.05		±	:5%
		90%		9	0.61		0.61		±	5%
		80%		8	0.53		0.53		±	5%
		70%		7	0.45		0.45		±	5%
		60%		6	0.39		0.39		<u>+</u>	:5%
		50%		5	0.34		0.34		±	:5%
		40%		4	0.35		0.35		±	:5%
		30%		3	0.39		0.39		±	:5%
		20%		2	0.47		0.47		±	:5%
		10%		1	0.58		0.58		±	:5%
		0%			).15		0.15			:5%
			asing and rec		P _n /s)					%P _n /s
I ime to	r Logic int	erface (at I	nput port) acti	ivated					0.	.092
		20.00% 0.00%	0 200	400	Time [ s ]			1200		
			Pow		•	Limit I	ow			
		om Factor: 250 X		M 10.		37.1984 <u>A92.7000</u>	s s ms · · · · ·	21.77 V 21.77 V 21.76 V A6.250mV		
		20.0 V 50.0 A	2 500 V	Z 40.		L. okS/s L. okS/s A points	2 / 0.00 V			
		50.0 A	4 500 V		51	A points	0.00 V			



4.13	TABLE: Sir	ngle fault tolera	ince				Р
No.	component No.	fault	test voltage [V]	test time	fuse No.	fuse current [A]	Test result
1.	DC input	Overload 120%P	520Vdc/ 230Vac	3min			Unit normal operation No damage, no hazard, no fire
2.	PV+ to PV-	Short circuit	520Vdc/ 230Vac	3min			Unit shut down, No damage, no hazard, no fire
3.	PV+ to PV-	Reverse	650Vdc/ 230Vac	3min			Unit can't start, No damage, no hazard, no fire
4.	Output L1 to N	Reverse	520Vdc/ 230Vac	3min			Unit shut down, error message: Grid V outlim. No damage, no hazard, no fire
5.	Output L2 to N	Reverse	520Vdc/ 230Vac	3min			Unit shut down, error message: Grid V outlim. No damage, no hazard, no fire
6.	Output L3 to N	Reverse	520Vdc/ 230Vac	3min			Unit shut down, error message: Grid V outlim. No damage, no hazard, no fire
7.	ISO Relay (K2)	Short circuit	520Vdc/ 230Vac	3min			Unit shut down, error message: IsoFault. No damage, no hazard, no fire
8.	Q2 G-D	Short circuit	650Vdc/ 230Vac	3min			SPS no output, No damage, no hazard, no fire
9.	Q2 D-S	Short circuit	650Vdc/ 230Vac	3min			SPS no output, No damage, no hazard, no fire
10.	Transformer T1 Pin 27 to Pin 29	Short circuit	650Vdc/ 230Vac	3min			Unit can't start , No damage, no hazard, no fire
11.	SPS Transformer T1 Pin 32 to Pin 34	Short circuit	650Vdc/ 230Vac	3min			Unit can't start , No damage, no hazard, no fire
12.	Boost IGBT (Q2A)	Pin1 to Pin2 Short circuit	650Vdc/ 230Vac	3min			Unit can't start No damage, no hazard, no fire
13.	Boost IGBT (Q2A)	Pin2 to Pin3 Short circuit	650Vdc/ 230Vac	3min			Unit can't start No damage, no hazard, no fire
14.	Boost IGBT (Q2A)	Pin1 to Pin3 Short circuit	650Vdc/ 230Vac	3min			Unit can't start No damage, no hazard, no fire
15.	Inverter IGBT (TQ1A)	Pin1 to Pin2 Short circuit	520Vdc/ 230Vac	3min			Unit can't start, error message: HardwareFault, No damage, no hazard, no fire
16.	Inverter IGBT (TQ1A)	Pin1 to Pin3 Short circuit	520Vdc/ 230Vac	3min			Unit can't start, error message: HardwareFault, No damage, no hazard, no fire



### Page 79 of 83

Report No. 2308A0284SHA-001

32.	Frequency resistance monitoring R563	Open circuit	520Vdc/ 230Vac	3min	 	Unit shut down, error message: Grid F outlim. No damage, no hazard, no fire
31.	Bus- resistance monitoring, R69	Short circuit	520Vdc/ 230Vac	3min	 	Unit can't start up No damage, no hazard, no fire
30.	Bus- resistance monitoring, R69	Open circuit	520Vdc/ 230Vac	3min	 	Unit shut down, error massage: BusAllVoltHwOveFault. No damage, no hazard, no fire
29.	Optocoupler U18	Short circuit	650Vdc/ 230Vac	3min	 	Unit can't start No damage, no hazard, no fire
28.	Relay (RL14)	Open circuit	650Vdc/ 230Vac	3min	 	Unit shut down, error massage: GridRelayFault. No damage, no hazard, no fire
27.	Relay (RL14)	Short circuit	650Vdc/ 230Vac	3min	 	Unit shut down, error massage: GridRelayFault. No damage, no hazard, no fire
26.	Relay (RL11)	Open circuit	650Vdc/ 230Vac	3min	 	Unit shut down, error massage: GridRelayFault. No damage, no hazard, no fire
25.	Relay (RL11)	Short circuit	650Vdc/ 230Vac	3min	 	Unit shut down, error massage: GridRelayFault. No damage, no hazard, no fire
24.	Relay (RL10)	Open circuit	650Vdc/ 230Vac	3min	 	Unit shut down, error massage: GridRelayFault. No damage, no hazard, no fire
23.	Relay (RL10)	Short circuit	650Vdc/ 230Vac	3min	 	Unit shut down, error massage: GridRelayFault. No damage, no hazard, no fire
22.	Relay (RL7)	Open circuit	650Vdc/ 230Vac	3min	 	Unit shut down, error massage: GridRelayFault. No damage, no hazard, no fire
21.	Relay (RL7)	Short circuit	650Vdc/ 230Vac	3min	 	Unit shut down, error massage: GridRelayFault. No damage, no hazard, no fire
20.	Relay (RL6)	Open circuit	650Vdc/ 230Vac	3min	 	Unit shut down, error massage: GridRelayFault. No damage, no hazard, no fire
19.	Relay (RL6)	Short circuit	650Vdc/ 230Vac	3min	 	Unit shut down, error massage: GridRelayFault. No damage, no hazard, no fire
18.	Relay (RL3)	Open circuit	650Vdc/ 230Vac	3min	 	Unit shut down, error massage: GridRelayFault. No damage, no hazard, no fire
17.	Relay (RL3)	Short circuit	650Vdc/ 230Vac	3min	 	Unit shut down, error massage: GridRelayFault. No damage, no hazard, no fire



Page 80 of 83

Report No. 2308A0284SHA-001

33.	GFCI check R869	Short circuit	520Vdc/ 230Vac	3min	 	Unit can't operate, error massage: LeakCurrFault no danger, no hazard, no fires
34.	GFCI check R554	Open circuit	520Vdc/ 230Vac	3min	 	Unit can't operate, error massage: LeakCurrFault no danger, no hazard, no fires




# Annex B Photos





# Annex B Photos





# Annex B Photos

